Brain Computer Interfaces in Rehabilitation Medicine

Wiley - Tập 10 Số 9S2 - 2018
Marcia A. Marcia A., Gerard Gerard, Ray Ray, Jared Jared, Ryan Ryan, Michael L. Michael L.

Tóm tắt

AbstractOne innovation currently influencing physical medicine and rehabilitation is brain–computer interface (BCI) technology. BCI systems used for motor control record neural activity associated with thoughts, perceptions, and motor intent; decode brain signals into commands for output devices; and perform the user's intended action through an output device. BCI systems used for sensory augmentation transduce environmental stimuli into neural signals interpretable by the central nervous system. Both types of systems have potential for reducing disability by facilitating a user's interaction with the environment. Investigational BCI systems are being used in the rehabilitation setting both as neuroprostheses to replace lost function and as potential plasticity‐enhancing therapy tools aimed at accelerating neurorecovery. Populations benefitting from motor and somatosensory BCI systems include those with spinal cord injury, motor neuron disease, limb amputation, and stroke. This article discusses the basic components of BCI for rehabilitation, including recording systems and locations, signal processing and translation algorithms, and external devices controlled through BCI commands. An overview of applications in motor and sensory restoration is provided, along with ethical questions and user perspectives regarding BCI technology.

Tài liệu tham khảo

10.1109/TRE.2000.847807 10.1088/1741-2560/6/6/066001 J.E.Arle J.L.Shils W.Q.Malik.Localized stimulation and recording in the spinal cord with microelectrode arrays. Paper presented at:Engineering in Medicine and Biology Society (EMBC) 2012 Annual International Conference of the IEEE2012. 10.1126/scitranslmed.3007303 10.1080/13854040600910018 10.1016/j.clinph.2015.03.014 10.1016/j.clinph.2016.12.012 10.1016/S1388-2457(00)00457-0 10.1109/86.662615 Widge A.S., 2010, Direct neural control of anatomically correct robotic hands. Brain‐Computer Interfaces, 105 10.1113/jphysiol.2006.127142 10.1073/pnas.0913697107 10.1038/nature17435 10.1038/srep33807 10.1682/JRRD.2011.11.0213 10.1088/1741-2560/12/1/016011 10.1038/s41598-017-08120-9 10.1016/S0140-6736(17)30601-3 10.1155/2017/5491296 J.Wu K.Casimo D.J.Caldwell R.P.Rao J.G.Ojemann.Electrocorticographic dynamics predict visually guided motor imagery of grasp shaping. Paper presented at:Neural Engineering (NER) 2017 8th International IEEE/EMBS Conference on  2017. 10.1007/978-3-319-64373-1_5 10.3389/fneng.2014.00027 10.1111/ner.12332 10.1109/TOH.2016.2591952 10.1073/pnas.1616305114 10.1038/nature10489 10.1371/journal.pone.0176020 10.1007/s40141-014-0051-4 D.A.Friedenberg C.E.Bouton N.V.Annetta et al.Big data challenges in decoding cortical activity in a human with quadriplegia to inform a brain computer interface.Conf Proc IEEE Eng Med Biol Soc2016;3084–3087. D.A.Friedenberg M.Schwemmer N.Skomrock et al.Neural decoding algorithm requirements for a take‐home brain computer interface.Conf Proc IEEE Eng Med Biol Soc 2018 in press. 10.1186/s12984-016-0134-9 10.1016/j.pmr.2015.06.002 10.1038/sj.sc.3102091 10.1053/apmr.2001.25910 10.1111/dmcn.12955 10.1038/sj.sc.3101573 10.1097/00001756-199906030-00026 10.1016/j.neulet.2005.03.021 10.1016/S0304-3940(03)00947-9 10.1016/j.artmed.2013.07.004 R.Rupp M.Rohm M.Schneiders et al.Think2grasp‐bci‐controlled neuroprosthesis for the upper extremity.Biomed Tech (Berl)2013https://doi.org/10.1515/bmt‐2013‐4440. Grimm F., 2016, Hybrid neuroprosthesis for the upper limb: Combining brain‐controlled neuromuscular stimulation with a multi‐joint arm exoskeleton, Front Neurosci, 10, 367 10.1111/crj.12234 10.1161/STROKEAHA.115.009633 Marquez‐Chin C., 2016, EEG‐triggered functional electrical stimulation therapy for restoring upper limb function in chronic stroke with severe hemiplegia, Case Rep Neurol Med, 2016, 9146213 Rodrıguez M., 2011, Towards brain–robot interfaces in stroke rehabilitation, PLoS One, 6, 1 10.1186/1743-0003-9-56 10.1016/j.apmr.2008.10.030 K.E.Laver B.Lange S.George J.E.Deutsch G.Saposnik M.Crotty.Virtual reality for stroke rehabilitation.Stroke2018 STROKEAHA.117.020275 10.1016/S0140-6736(12)61816-9 10.1109/TNSRE.2016.2626391 10.3389/fnins.2018.00208 10.3389/fneur.2017.00452 G.Fluet J.Patel Q.Qinyin et al.Early versus delayed VR‐based hand training in persons with acute stroke. Paper presented at:2017 International Conference on Virtual Rehabilitation (ICVR);June 19‐22  2017. 10.1016/S0304-3940(00)01471-3 10.1016/j.robot.2016.10.005 10.3389/fnins.2013.00172 10.1615/CritRevBiomedEng.2014010453 10.1186/s12984-016-0162-5 10.1177/1545968316666957 10.2340/16501977-2229 Pfurtscheller G., 2010, The hybrid BCI, Front Neurosci, 4, 30 10.1016/j.clinph.2008.06.001 10.1126/scitranslmed.3006820 10.1126/scitranslmed.aaf8083 10.1046/j.1525-1403.2003.03017.x 10.1016/S1474-4422(08)70223-0 10.1113/jphysiol.2006.123067 Bamdad M., 2015, Application of BCI systems in neurorehabilitation: A scoping review, Disabil Rehabil, 10, 355 10.1126/scitranslmed.3007801 10.1088/1741-2552/aa6c31 10.1038/nature04970 10.3171/2008.10.JNS08466 Y.Wang B.Hong X.Gao S.Gao.Phase synchrony measurement in motor cortex for classifying single‐trial EEG during motor imagery. Paper presented at:Engineering in Medicine and Biology Society 2006. EMBS'06. 28th Annual International Conference of the IEEE2006. 10.1088/1741-2560/8/2/025007 10.1371/journal.pone.0055344 Y.Wang S.Makeig.Predicting intended movement direction using EEG from human posterior parietal cortex. Paper presented at:International Conference on Foundations of Augmented Cognition  2009. 10.1523/JNEUROSCI.2747-15.2015 10.1177/1545968310368683 10.1002/ana.23879 10.3389/fneng.2014.00030 10.1007/BF02345459 10.1038/sc.2012.14 A.Kreilinger V.Kaiser M.Rohm R.Rupp G.R.Müller‐Putz.BCI and FES training of a spinal cord injured end‐user to control a neuroprosthesis.Biomed Tech (Berl) 2013.https://doi.org/10.1515/bmt‐2013‐4443. 10.1038/s41598-017-17222-3 10.1097/00001756-199806010-00007 10.3389/fnhum.2017.00068 10.1038/nature11076 Keith M.W., 1988, Functional neuromuscular stimulation neuroprostheses for the tetraplegic hand, Clin Orthop Relat Res, 233, 25, 10.1097/00003086-198808000-00005 10.1016/j.pmrj.2016.07.427 10.1088/1741-2560/9/5/056016 10.1186/s12984-015-0074-9 Y.He K.Nathan A.Venkatakrishnan et al.An integrated neuro‐robotic interface for stroke rehabilitation using the NASA X1 powered lower limb exoskeleton.Paper presented at: Engineering in Medicine and Biology Society (EMBC) 2014 36th Annual International Conference of the IEEE2014. 10.1088/1741-2560/13/6/065002 10.1109/RBME.2016.2552201 10.1038/srep30383 10.1161/STROKEAHA.107.505313 10.1111/j.1469-8986.2010.01117.x 10.3389/fnins.2012.00039 10.1177/1545968312445910 10.1177/1545968314550368 10.3109/17518423.2014.899648 10.12970/2308-8354.2016.04.02 10.1177/1545968309338191 Young B.M., 2014, Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain‐computer interface, Front Neuroeng, 7, 26 J.L.Sullivan N.A.Bhagat N.Yozbatiran et al.Improving robotic stroke rehabilitation by incorporating neural intent detection: Preliminary results from a clinical trial. Paper presented at:Rehabilitation Robotics (ICORR) 2017 International Conference  2017. 10.1038/nrn2621 10.1152/jn.00434.2001 10.1007/BF00229017 10.1016/j.pain.2014.04.018 10.1016/j.jor.2013.01.006 Alimi M., 2014, Minimally invasive foraminotomy through tubular retractors via a contralateral approach in patients with unilateral radiculopathy, Op Neurosurg, 10, 436, 10.1227/NEU.0000000000000358 10.3171/FOC/2008/25/8/E10 10.1111/j.1468-1331.2007.01916.x 10.1111/ner.12072 10.1111/ner.12013 10.1111/ner.12338 10.1111/j.1525-1403.2010.00307.x 10.1111/ner.12358 10.1126/scitranslmed.3008669 10.1111/j.1533-2500.2010.00374.x 10.1109/TNSRE.2013.2244616 10.1073/pnas.1509265112 Kim S., 2015, Sensitivity to microstimulation of somatosensory cortex distributed over multiple electrodes, Front Syst Neurosci, 9, 47 10.1088/1741-2560/12/5/056010 10.1038/551159a 10.1007/s11948-015-9712-7