Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Vấn đề giá trị biên của phương trình Langevin phi tuyến với hai bậc phân số khác nhau và các dao động
Tóm tắt
Trong bài viết này, chúng tôi nghiên cứu một loại phương trình Langevin mới liên quan đến hai bậc phân số khác nhau và các dao động. Các điều kiện đủ được xây dựng để đảm bảo sự tồn tại và tính duy nhất của nghiệm cho các bài toán đã cho.
Từ khóa
#phương trình Langevin #bậc phân số #dao động #tồn tại nghiệm #tính duy nhấtTài liệu tham khảo
Kilbas AA, Srivastava HM, Trujillo JJ North-Holland Mathematics Studies 204. In Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.
Podlubny I Mathematics in Science and Engineering. In Fractional Differential Equations. Academic Press, New York; 1999.
Sabatier J, Agrawal OP, Machado JAT (Eds): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht; 2007.
Ahmad B, Nieto JJ: Sequential fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 2012, 64: 3046–3052. 10.1016/j.camwa.2012.02.036
Kaslik E, Sivasundaram S: Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlinear Anal., Real World Appl. 2012, 13: 1489–1497. 10.1016/j.nonrwa.2011.11.013
Guezane-Lakoud A, Khaldi R: Solvability of a fractional boundary value problem with fractional integral condition. Nonlinear Anal. 2012, 75: 2692–2700. 10.1016/j.na.2011.11.014
Zhou P, Zhu W: Function projective synchronization for fractional-order chaotic systems. Nonlinear Anal., Real World Appl. 2011, 12: 811–816. 10.1016/j.nonrwa.2010.08.008
Goodrich CS: Existence of a positive solution to systems of differential equations of fractional order. Comput. Math. Appl. 2011, 62: 1251–1268. 10.1016/j.camwa.2011.02.039
Agarwal RP, Benchohra M, Hamani S, Pinelas S: Boundary value problems for differential equations involving Riemann-Liouville fractional derivative on the half-line. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 2011, 18: 235–244.
Baleanu D, Agarwal RP, Mustafa OG, Cosulschi M: Asymptotic integration of some nonlinear differential equations with fractional time derivative. J. Phys. A 2011., 44: Article ID 055203
Agarwal RP, Zhou Y, Wang J, Luo X: Fractional functional differential equations with causal operators in Banach spaces. Math. Comput. Model. 2011, 54: 1440–1452. 10.1016/j.mcm.2011.04.016
Wang G, Agarwal RP, Cabada A: Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations. Appl. Math. Lett. 2012, 25: 1019–1024. 10.1016/j.aml.2011.09.078
Chen F, Nieto JJ, Zhou Y: Global attractivity for nonlinear fractional differential equations. Nonlinear Anal., Real World Appl. 2012, 13: 287–298. 10.1016/j.nonrwa.2011.07.034
Wang J, Zhou Y: A class of fractional evolution equations and optimal controls. Nonlinear Anal. 2011, 12: 262–272. 10.1016/j.nonrwa.2010.06.013
Wang G, Ntouyas SK, Zhang L: Positive solutions of the three-point boundary value problem for fractional-order differential equations with an advanced argument. Adv. Differ. Equ. 2011., 2011: Article ID 2
Wax N (Ed): Selected Papers on Noise and Stochastic Processes. Dover, New York; 1954.
Mazo R: Brownian Motion: Fluctuations, Dynamics and Applications. Oxford Univ. Press, Oxford; 2002.
Coffey WT, Kalmykov YP, Waldron JT: The Langevin Equation. 2nd edition. World Scientific, Singapore; 2004.
Kobolev V, Romanov E: Fractional Langevin equation to describe anomalous diffusion. Prog. Theor. Phys. Suppl. 2000, 139: 470–476.
Lim SC, Muniandy SV: Self-similar Gaussian processes for modeling anomalous diffusion. Phys. Rev. E 2002., 66: Article ID 021114
Picozzi S, West B: Fractional Langevin model of memory in financial markets. Phys. Rev. E 2002., 66: Article ID 046118
Lim SC, Li M, Teo LP: Locally self-similar fractional oscillator processes. Fluct. Noise Lett. 2007, 7: 169–179. 10.1142/S0219477507003817
Lim SC, Li M, Teo LP: Langevin equation with two fractional orders. Phys. Lett. A 2008, 372(42):6309–6320. 10.1016/j.physleta.2008.08.045
Lim SC, Teo LP: The fractional oscillator process with two indices. J. Phys. A 2009., 42(6): Article ID 065208
Ahmad B, Nieto JJ: Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions. Int. J. Differ. Equ. 2010., 2010: Article ID 649486
Ahmad B, Nieto JJ, Alsaedi A, El-Shahed M: A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal., Real World Appl. 2012, 13: 599–606. 10.1016/j.nonrwa.2011.07.052
Byszewski L, Lakshmikantham V: Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 1991, 40: 11–19. 10.1080/00036819008839989
Byszewski L: Theorems about existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 1991, 162: 494–505. 10.1016/0022-247X(91)90164-U
Balachandran K, Trujillo JJ: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces. Nonlinear Anal. 2010, 72: 4587–4593. 10.1016/j.na.2010.02.035
N’Guerekata GM: A Cauchy problem for some fractional abstract differential equation with nonlocal condition. Nonlinear Anal. 2009, 70: 1873–1876. 10.1016/j.na.2008.02.087
Feng M, Zhang X, Ge W: New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions. Bound. Value Probl. 2011., 2011: Article ID 720702
Salem HAH: Fractional order boundary value problem with integral boundary conditions involving Pettis integral. Acta Math. Sci. 2011, 31: 661–672.
Ahmad B, Nieto JJ, Alsaedi A: Existence and uniqueness of solutions for nonlinear fractional differential equations with non-separated type integral boundary conditions. Acta Math. Sci. 2011, 31: 2122–2130.
Ahmad B, Nieto JJ: Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions. Bound. Value Probl. 2009., 2009: Article ID 708576
Ahmad B, Ntouyas SK, Alsaedi A: New existence results for nonlinear fractional differential equations with three-point integral boundary conditions. Adv. Differ. Equ. 2011., 2011: Article ID 107384
Benchohra M, Graef JR, Hamani S: Existence results for boundary value problems with nonlinear fractional differential equations. Appl. Anal. 2008, 87: 851–863. 10.1080/00036810802307579
Hamani S, Benchohra M, Graef JR: Existence results for boundary value problems with nonlinear fractional inclusions and integral conditions. Electron. J. Differ. Equ. 2010, 20: 1–16.
Liu X, Jia M, Wu B: Existence and uniqueness of solution for fractional differential equations with integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2009, 69: 1–10.
Cabada A, Wang G: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 2012, 389: 403–411. 10.1016/j.jmaa.2011.11.065
Benchohra M, Hamani S, Ntouyas SK: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. 2009, 71: 2391–2396. 10.1016/j.na.2009.01.073
Wang, G, Ahmad, B, Zhang, L: New existence results for nonlinear impulsive integro-differential equations of fractional order with nonlocal boundary conditions. Nonlinear Stud. (to appear)
Wang G, Ahmad B, Zhang L: Some existence results for impulsive nonlinear fractional differential equations with mixed boundary conditions. Comput. Math. Appl. 2011, 62: 1389–1397. 10.1016/j.camwa.2011.04.004
Wang G, Ahmad B, Zhang L: Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order. Nonlinear Anal. 2011, 74: 792–804. 10.1016/j.na.2010.09.030
Zhang L, Wang G: Existence of solutions for nonlinear fractional differential equations with impulses and anti-periodic boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2011., 2011: Article ID 7
Ahmad B, Wang G: A study of an impulsive four-point nonlocal boundary value problem of nonlinear fractional differential equations. Comput. Math. Appl. 2011, 62: 1341–1349. 10.1016/j.camwa.2011.04.033
Ahmad B, Nieto JJ: Existence of solutions for impulsive anti-periodic boundary value problems of fractional order. Taiwan. J. Math. 2011, 15: 981–993.
Ahmad B, Sivasundaram S: Existence of solutions for impulsive integral boundary value problems of fractional order. Nonlinear Anal. Hybrid Syst. 2010, 4: 134–141. 10.1016/j.nahs.2009.09.002
Agarwal RP, Ahmad B: Existence of solutions for impulsive anti-periodic boundary value problems of fractional semilinear evolution equations. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 2011, 18: 457–470.
Mophou GM: Existence and uniqueness of mild solutions to impulsive fractional differential equations. Nonlinear Anal. 2010, 72: 1604–1615. 10.1016/j.na.2009.08.046
Tian Y, Bai Z: Existence results for the three-point impulsive boundary value problem involving fractional differential equations. Comput. Math. Appl. 2010, 59: 2601–2609. 10.1016/j.camwa.2010.01.028
Zhang X, Huang X, Liu Z: The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay. Nonlinear Anal. Hybrid Syst. 2010, 4: 775–781. 10.1016/j.nahs.2010.05.007