Botulinum Neurotoxin Type A: Limited Proteolysis by Endoproteinase Glu-C and α-Chymotrypsin Enhanced Following Reduction; Identification of the Cleaved Sites and Fragments

Journal of Protein Chemistry - Tập 16 - Trang 701-712 - 1997
Douglas J. Beecher1, Bibhuti R. DasGupta1
1Department of Food Microbiology and Toxicology, University of Wisconsin, Madison

Tóm tắt

Botulinum neurotoxin (NT) serotype A is a ∼150-kDa dichain protein. Posttranslational nicking of the single-chain NT (residues Pro 1–Leu 1295) by the protease(s) endogenous to Clostridium botulinum excises 10 residues, leaving Pro 1–Lys 437 and Ala 448–Leu 1295 in the ∼50-kDa light (L) and ∼100-kDa heavy (H) chains, respectively, connected by a Cys 429–Cys 453 disulfide and noncovalent bonds [Krieglstein et al. (1994), J. Protein Chem. 13, 49–57]. The L chain is a metalloprotease, while the amino- and carboxy-terminal halves of the H chain have channel-forming and receptor-binding activities, respectively [Montecucco and Schiavo (1995), Q. Rev. Biophys. 28, 423–472]. Endoproteinase Glu-C and α-chymotrypsin were used for controlled digestion at pH 7.4 of the ∼150-kDa dichain NT and the isolated ∼100-kDa H chain (i.e., freed from the L chain) in order to map the cleavage sites and isolate the proteolytic fragments. The dichain NT appeared more resistant to cleavage by endoproteinase Glu-C than the isolated H chain. In contrast, the NT with its disulfide(s) reduced showed rapid digestion of both chains, including a cleavage between Glu 251 and Met 252 (resulting in ∼30- and ∼20-kDa fragments of the L chain) which was not noted unless the NT was reduced. Interestingly, an adjacent bond, Tyr 249–Tyr 250, was noted earlier [DasGupta and Foley (1989), Biochimie 71, 1193–1200] to undergo “self-cleavage” following reductive separation of the L chain from the H chain. The site Tyr–Tyr–Glu–Met (residues 249–252) appears to become exposed following reduction of Cys 429–Cys 453 disulfide. Identification of Glu 669–Ile 670 and Tyr 683–Ile 684 as protease-susceptible sites demonstrated for the first time that at least two peptide bonds in the segment of the H chain (residues 659–684), part of which (residues 659–681) is thought to interact with the endosomal membranes and forms channels [Oblatt-Montal et al., (1995), Protein Sci. 4, 1490–1497], are exposed on the surface of the NT. Two of the fragments of the H chain we generated and purified by chromatography are suitable for structure–function studies; the ∼85- and ∼45-kDa fragments beginning at residue Leu 544 and Ser 884, respectively (both extend presumably to Leu 1295) contain the channel-forming segment and receptor-binding segments, respectively. In determining partial amino acid sequences of 10 fragments, a total of 149 amino acids in the 1275-residue NT were chemically identified.

Tài liệu tham khảo

Ahnert-Hilger, G., and Bigalke, H. (1995). Prog. Neurobiol. 46, 83–96. Bajjalieh, S. M., and Scheller, R. H. (1995). J. Biol. Chem. 270, 1971–1974. Banerjee, A., Martin, T. F. J., and DasGupta, B. R. (1993). Neurosci. Lett. 164, 93–96. Barinaga, M. (1993). Science 260, 487–489. Betley, M. J., Somers, E., and DasGupta, B. R. (1989). Biochem. Biophys. Res. Commun. 162, 1388–1395. Binz, T., Kaurazono, H., Wille, M., Frevert, J., Wernars, K., and Niemann, H. (1990). J. Biol. Chem. 265, 9153–9158. Blaustein, R. O., Germann, W. J., Finkelstein, A., and DasGupta, B. R. (1987). FEBS Lett. 226, 115–120. Cutler, D. (1992). Nature 359, 773. DasGupta, B. R. (1990). J. Physiol. (Paris) 84, 220–228. DasGupta, B. R., and Foley, J. (1989). Biochimie 71, 1193–1200. DasGupta, B. R., and Sathyamoorthy, V. (1984). Toxicon 22, 415–424. DasGupta, B. R., and Sugiyama, H. (1972). Biochem. Biophys. Res. Commun. 48, 108–112. Davis, B. J. (1964). Ann. N. Y. Acad. Sci. 121, 405–427. Dekleva, M. L., and DasGupta, B. R. (1990). J. Bacteriol. 172, 2498–2503. DePavia, A., Poulain, B., Lawrence, G. W., Shone, C. C., Tauc, L., and Dolly, J. O. (1993). J. Biol. Chem. 268, 20838–20844. Edman, P., and Henschen, A. (1975). In Protein Sequence Determination, 2nd ed. (Needleman, S. B., ed.), Springer-Verlag, Berlin, pp. 232–279. Gimenez, J. A., and DasGupta, B. R. (1993). J. Protein Chem. 12, 351–363. Huttner, W. B. (1993). Nature 365, 104–105. ei]Jankovic, J., and Hallett, M. (eds.) (1994). Therapy with Botulinum Toxin, Dekker, New York. Krieglstein, K. G., DasGupta, B. R., and A. H. Henschen. (1994). J. Protein Chem. 13, 49–57. Laemmli, U. K. (1970). Nature 227, 680–685. Matsudaira, P. T. (1987). J. Biol. Chem. 262, 10035–10038. Montecucco, C., and Schiavo, G. (1995). Q. Rev. Biophys. 28, 423–472. Niemann, H., Blasi, J., and Jahn, R. (1994). Trends Cell Biol. 4, 179–185. Nishiki, T., Tokuyama, Y., Kamata, Y., Nemoto, Y., Yoshida, A., Sato, K., Sekiguchi, M., Takahashi, M., and Kozaki, S. (1996). FEBS Lett. 378, 253–257. Oblatt-Montal, M., Yamazaki, M., Nelson, R., and Montal, M. (1995). Protein Sci. 4, 1490–1497. Regnier, F. E. (1987). Science 238, 319–323. Sathyamoorthy, V., and DasGupta, B. R. (1985). J. Biol. Chem. 260, 10461–10466. Sathyamoorthy, V., DasGupta, B. R., Foley, J., and Niece, R. L. (1988). Arch. Biochem. Biophys. 266, 142–151. Schengrund, C.-L., DasGupta, B. R., and Ringler, N. J. (1991). J. Neurochem. 57, 1024–1032. Schmidt, J. J., and Bostian, K. A. (1995). J. Protein Chem. 14, 703–708. Schmidt, J. J., Sathyamoorthy, V., and DasGupta, B. R. (1984). Biochem. Biophys. Res. Commun. 119, 900–904. Shone, C. C., Hambleton, P., and Melling, J. (1987). Eur. J. Biochem. 167, 175–180. Südhof, T. C. (1995). Nature 375, 645–653. Südhof, T. C., DeCamilli, P., Niemann, H., and Jahn, R. (1993). Cell 75, 1–4. Thompson, E. E., Brehm, J. K., Oultram, J. D., Swinfield, T. J., Shone, C. C., Atkinson, T., Melling, J. and Minton, N. P. (1990). Eur. J. Biochem. 189, 73–81. Whelan, S., Elmore, M. J., Bodsworth, N. J., Brehm, J. K., Atkinson, T., and Minton, N. P. (1992). Appl. Environ. Microbiol. 58, 2345–2354.