Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrane H<sup>+</sup>‐ATPase, in relation to water and nutrient uptake

Physiologia Plantarum - Tập 132 Số 4 - Trang 479-490 - 2008
Maria del Carmen Martínez‐Ballesta1,2, Elizabeth Bastías1,3, Chuanfeng Zhu4,5, Anton R. Schäffner4, María Begoña González‐Moro6, Carmen González‐Murua6, Micaela Carvajal2
1Both authors contributed equally.
2Departamento de Nutrición Vegetal. Centro de Edafología y Biología Aplicada del Segura – CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
3Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Casilla 6-D, Arica, Chile
4Institute of Biochemical Plant Pathology, GSF – National Research Center for Environment and Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
5Present address: National Key Lab of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 3A Datun Road, Chaoyang District, Beijing 100101, China
6Departamento de Biología Vegetal y Ecología, Universidad del País Vasco, Spain /Euskal Herriko Unibertsitatea, Spain

Tóm tắt

Under saline conditions, an optimal cell water balance, possibly mediated by aquaporins, is important to maintain the whole‐plant water status. Furthermore, excessive accumulation of boric acid in the soil solution can be observed in saline soils. In this work, the interaction between salinity and excess boron with respect to the root hydraulic conductance (L0), abundance of aquaporins (ZmPIP1 and ZmPIP2), ATPase activity and root sap nutrient content, in the highly boron‐ and salt‐tolerant Zea mays L. cv. amylacea, was evaluated. A downregulation of root ZmPIP1 and ZmPIP2 aquaporin contents were observed in NaCl‐treated plants in agreement with the L0 measurements. However, in the H3BO3‐treated plants differences in the ZmPIP1 and ZmPIP2 abundance were observed. The ATPase activity was related directly to the amount of ATPase protein and Na+ concentration in the roots, for which an increase in NaCl‐ and H3BO3+ NaCl‐treated plants was observed with respect to untreated and H3BO3‐treated plants. Although nutrient imbalance may result from the effect of salinity or H3BO3 alone, an ameliorative effect was observed when both treatments were applied together. In conclusion, our results suggest that under salt stress, the activity of specific membrane components can be influenced directly by boric acid, regulating the functions of certain aquaporin isoforms and ATPase as possible components of the salinity tolerance mechanism.

Từ khóa


Tài liệu tham khảo

10.1023/A:1011931831273

10.1104/pp.97.3.1136

10.1034/j.1399-3054.2002.1150201.x

10.1006/eesa.1999.1765

10.1080/01904169709365288

10.1055/s-2004-820889

10.1007/s11104-005-4292-y

10.1007/s11104-005-4689-7

10.1006/jmbi.1999.3032

10.1016/S0168-9452(99)00210-1

10.1007/BF00195729

10.1034/j.1399-3054.1999.105115.x

10.1046/j.1469-8137.2000.00593.x

10.1104/pp.117.4.1143

10.1104/pp.122.4.1025

10.1104/pp.125.3.1206

10.1093/jxb/42.8.1065

Daniel MJ, 1996, Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site, Plant Cell, 8, 587

10.1023/A:1011837903688

10.1104/pp.124.3.1349

10.1080/15226510701373221

10.1104/pp.103.3.763

10.1016/S0176-1617(00)80172-8

Flowers TJ, 1983, Encyclopedia of Plant Physiology, New Series Vol. 15B, 651

10.1007/BF00025006

10.1016/S0176-1617(00)80238-2

10.1016/S0168-9452(03)00117-1

10.1016/S0176-1617(97)80087-9

10.1080/01904160009382095

Grover A, 2001, Understanding molecular alphabets of the plant abiotic stress responses, Curr Sci, 80, 206

Hanaoka H, 2007, Channel‐mediated boron transport in rice, Plant Cell Physiol, 48, 227

10.1146/annurev.arplant.51.1.463

10.1023/A:1004255707413

10.1081/PLN-100001387

10.1023/B:BIOP.0000022274.72111.12

10.1006/anbo.1996.0003

10.1034/j.1399-3054.1998.1040304.x

10.1023/B:PLAN.0000040900.61345.a6

10.1104/pp.126.4.1358

10.1046/j.1365-313X.1994.6020187.x

10.1016/0076-6879(87)48054-3

10.1006/anbo.1993.1079

10.2135/cropsci1997.0011183X003700010032x

10.1093/pcp/pcg168

10.1111/j.1365-3040.2004.01295.x

Maas EV, 1990, Salinity Assessment and Management, 262

Martinez‐Ballesta MC, 2000, Regulation of water channel activity in whole roots and in protoplasts from roots of melon plants grown under saline conditions, Aust J Plant Physiol, 27, 685

10.1034/j.1399-3054.2003.00044.x

10.1055/s-2006-924172

10.1071/PP9860143

10.1104/pp.109.3.735

Parker I, 1965, Distribución geográfica, clasificación y estudio del maíz (Zea mays. L) en Chile, Agricultura Técnica, 25, 70

10.1093/jxb/47.3.377

10.1016/S0021-9258(18)54108-9

10.1111/j.1399-3054.1992.tb08763.x

10.1007/s004250050239

10.1146/annurev.pp.40.060189.000425

10.2134/agronj1993.00021962008500030036x

10.1073/pnas.120170197

10.1007/s10535-006-0130-1

10.1007/BF01587602

10.1093/pcp/pcf148

Sümer A, 2004, Evidence of Na+ toxicity for the vegetative growth of maize (Zea mays L.) during the first phase of salt stress, J Appl Bot, 78, 135

10.1038/nature01139

10.1105/tpc.106.041640

Tsadilas CD, 1997, Soil contamination with boron due to irrigation with treated municipal waste water, 265

10.1046/j.0016-8025.2001.00791.x

10.1046/j.0016-8025.2003.01051.x

10.1093/jxb/eri294

10.1002/jpln.200520503