Boosting the resolution of low-field $$^{15}\hbox {N}$$ relaxation experiments on intrinsically disordered proteins with triple-resonance NMR

Journal of Biomolecular NMR - Tập 74 - Trang 139-145 - 2020
Zuzana Jaseňáková1, Vojtěch Zapletal1, Petr Padrta2, Milan Zachrdla3, Nicolas Bolik-Coulon3, Thorsten Marquardsen4, Jean-Max Tyburn5, Lukáš Žídek1, Fabien Ferrage3, Pavel Kadeřávek2
1National Centre for Biomolecular Research, Faculty of Science and Central European Institute of Technology, Masaryk University, Brno, Czech Republic
2Central European Institute of Technology, Masaryk University, Brno, Czech Republic
3Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
4Bruker BioSpin GmbH, Rheinstetten, Germany
5Bruker BioSpin, Wissembourg Cedex, France

Tóm tắt

Improving our understanding of nanosecond motions in disordered proteins requires the enhanced sampling of the spectral density function obtained from relaxation at low magnetic fields. High-resolution relaxometry and two-field NMR measurements of relaxation have, so far, only been based on the recording of one- or two-dimensional spectra, which provide insufficient resolution for challenging disordered proteins. Here, we introduce a 3D-HNCO-based two-field NMR experiment for measurements of protein backbone $$^{15}\hbox {N}$$ amide longitudinal relaxation rates. The experiment provides accurate longitudinal relaxation rates at low field (0.33 T in our case) preserving the resolution and sensitivity typical for high-field NMR spectroscopy. Radiofrequency pulses applied on six different radiofrequency channels are used to manipulate the spin system at both fields. The experiment was demonstrated on the C-terminal domain of $$\delta$$ subunit of RNA polymerase from Bacillus subtilis, a protein with highly repetitive amino-acid sequence and very low dispersion of backbone chemical shifts.

Tài liệu tham khảo

Abyzov A, Salvi N, Schneider R, Maurin D, Ruigrok RWH, Jensen MR, Blackledge M (2016) Identification of dynamic modes in an intrinsically disordered protein using temperature-dependent NMR relaxation. J Am Chem Soc 138(19):6240–6251 Burum D, Ernst R (1980) Net polarization transfer via a J-ordered state for signal enhancement of low-sensitivity nuclei. J Magn Reson 39(1):163–168 Charlier C, Khan SN, Marquardsen T, Pelupessy P, Reiss V, Sakellariou D, Bodenhausen G, Engelke F, Ferrage F (2013) Nanosecond time scale motions in proteins revealed by high-resolution NMR relaxometry. J Am Chem Soc 135(49):18665–18672 Clarkson MW, Lei M, Eisenmesser EZ, Labeikovsky W, Redfield A, Kern D (2009) Mesodynamics in the SARS nucleocapsid measured by NMR field cycling. J Biomol NMR 45(1–2):217–225 Coggins BE, Werner-Allen JW, Yan A, Zhou P (2012) Rapid protein global fold determination using ultrasparse sampling, high-dynamic range artifact suppression, and time-shared NOESY. J Am Chem Soc 134(45):18619–18630 Cousin SF, Charlier C, Kadeřávek P, Marquardsen T, Tyburn JM, Bovier PA, Ulzega S, Speck T, Wilhelm D, Engelke F, Maas W, Sakellariou D, Bodenhausen G, Pelupessy P, Ferrage F (2016a) High-resolution two-field nuclear magnetic resonance spectroscopy. Phys Chem Chem Phys 18(48):33187–33194 Cousin SF, Kadeřávek P, Haddou B, Charlier C, Marquardsen T, Tyburn JM, Bovier PA, Engelke F, Maas W, Bodenhausen G, Pelupessy P, Ferrage F (2016b) Recovering invisible signals by two-field NMR spectroscopy. Angew Chem Int Ed 55(34):9886–9889 Cousin SF, Kadeřávek P, Bolik-Coulon N, Ferrage F (2018) Determination of protein ps-ns motions by high-resolution relaxometry. Methods Mol Biol 1688:169–203 Cousin SF, Kadeřávek P, Bolik-Coulon N, Gu Y, Charlier C, Garber L, Bruschweiler-Li L, Marquardsen T, Tyburn JM, Bruschweiler R, Ferrage F (2018) Time-resolved protein side-chain motions unraveled by high-resolution relaxometry and molecular dynamics simulations. J Am Chem Soc 140(41):13456–13465 Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293 DeSaro F, Woody A, Helmann J (1995) Structural-analysis of the Bacillus-subtilis delta-factor: a protein polyanion which displaces RNA from RNA-polymerase. J Mol Biol 252(2):189–202 Eaton JW, Bateman D, Hauberg S, Wehbring R (2014) GNU Octave version 3.8.1 manual: a high-level interactive language for numerical computations. CreateSpace independent publishing platform. ISBN 1441413006 Emsley L, Bodenhausen G (1990) Gaussian pulse cascades: new analytical functions for rectangular selective inversion and in-phase excitation in NMR. Chem Phys Lett 165(6):469–476 Ferrage F (2012) Protein dynamics by \(^{15}\text{ N }\) nuclear magnetic relaxation. Methods Mol Biol 831:141–163 Ghose R (2000) Average Liouvillian theory in nuclear magnetic resonance: principles, properties, and applications. Concepts Magn Reson 12(3):152–172 Gill ML, Byrd RA, Palmer AG (2016) Dynamics of GCN4 facilitate DNA interaction: a model-free analysis of an intrinsically disordered region. Phys Chem Chem Phys 18(8):5839–5849 Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 3:185–204 Hall P (1988) Theoretical comparison of bootstrap confidence intervals. Ann Stat 16:1–50 Kadeřávek P, Bolik-Coulon N, Cousin SF, Marquardsen T, Tyburn JM, Dumez JN, Ferrage F (2019) Protein dynamics from accurate low-field site-specific longitudinal and transverse nuclear spin relaxation. J Phys Chem Lett 101(19):5917–5922 Kadeřávek P, Zapletal V, Rabatinová A, Krasný L, Sklenář V, Žídek L (2014) Spectral density mapping protocols for analysis of molecular motions in disordered proteins. J Biomol NMR 58(3):193–207 Kazimierczuk K, Zawadzka A, Kozminski W (2008) Optimization of random time domain sampling in multidimensional NMR. J Magn Reson 192(1):123–130 Khan SN, Charlier C, Augustyniak R, Salvi N, Dejean V, Bodenhausen G, Lequin O, Pelupessy P, Ferrage F (2015) Distribution of pico- and nanosecond motions in disordered proteins from nuclear spin relaxation. Biophys J 109(5):988–999 Kroenke CD, Loria JP, Lee LK, Rance M, Palmer AG (1998) Longitudinal and transverse \(^{1}\text{ H }\)-\(^{15}\text{ N }\) dipolar \(^{15}\text{ N }\) chemical shift anisotropy relaxation interference: unambiguous determination of rotational diffusion tensors and chemical exchange effects in biological macromolecules. J Am Chem Soc 120(31):7905–7915 Kubáň V, Srb P, Stegnerová H, Padrta P, Zachrdla M, Jaseňáková Z, Šanderová H, Vítovská D, Krásný L, Koval T, Dohnálek J, Ziemska-Legicka J, Grynberg M, Jarnot P, Gruca A, Jensen MR, Blackledge M, Žídek L (2019) Quantitative conformational analysis of functionally important electrostatic interactions in the intrinsically disordered region of delta subunit of bacterial RNA polymerase. J Am Chem Soc 141(42):16817–16828 Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31(8):1325–1327 Levitt MH, Dibari L (1992) Steady-state in magnetic-resonance pulse experiments. Phys Rev Lett 69(21):3124–3127 Linnet TE, Teilum K (2016) Non-uniform sampling of NMR relaxation data. J Biomol NMR 64:165–173 Mayzel M, Ahlner A, Lundström P, Orekhov VY (2017) Measurement of protein backbone (CO)-C-13 and N-15 relaxation dispersion at high resolution. J Biomol NMR 69(1):1–12 Mobli M, Hoch JC (2014) Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR. Prog Nucl Magn Res Spectrosc 83:21–41 Morris G, Freeman R (1979) Enhancement of nuclear magnetic-resonance signals by polarization transfer. J Am Chem Soc 101(3):760–762 Motáčková V, Šanderová H, Žídek L, Nováček J, Padrta P, Švenková A, Korelusová J, Jonák J, Krásný L, Sklenář V (2010) Solution structure of the N-terminal domain of Bacillus subtilis \(\delta\) subunit of RNA polymerase and its classification based on structural homologs. Proteins 78(7):1807–1810 Orekhov VY, Jaravine VA (2011) Analysis of non-uniformly sampled spectra with multi-dimensional decomposition. Prog Nucl Magn Res Spectrosc 59(3):271–292 Palmer A, Cavanagh J, Wright P, Rance M (1991) Sensitivity improvement in proton-detected 2-dimensional heteronuclear correlation NMR-spectroscopy. J Magn Reson 93(1):151–170 Papoušková V, Kadeřávek P, Otrusinová O, Šanderová H, Nováček J, Krásný L, Sklenář V, Žídek L (2013) Structural study of the partially disordered full-length delta subunit of RNA polymerase from Bacillus subtilis. ChemBioChem 14(14):1772–1779 Rabatinová A, Matějíčková JJ, Korelusová J, Sojka L, Papoušková V, Sklenář V, Žídek L, Krásný L (2013) The delta subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell. J Bacteriol 195(11):2603–2611 Redfield AG (2012) High-resolution NMR field-cycling device for full-range relaxation and structural studies of biopolymers on a shared commercial instrument. J Biomol NMR 52(2):159–177 Shaka A, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broad-band decoupling - WALTZ-16. J Magn Reson 52(2):335–338 Shaka A, Barker P, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64(3):547–552 Shchukina A, Urbańnczyk M, Kasprzak P, Kazimierczuk K (2018) Alternative data processing techniques for serial NMRexperiments. Concepts Magn Reson Part A 46A(e21429):1–11 Srb P, Nováček J, Kadeřávek P, Rabatinová A, Krásný L, Žídková J, Bobalová J, Sklenář V, Žídek L (2017) Triple resonance NMR relaxation experiments for studies of intrinsically disordered proteins. J Biomol NMR 69(3):133–146 States DJ, Haberkorn RA, Ruben DJ (1982) A two-dimensional nuclear overhauser experiment with pure absorption phase in four quadrants. J Magn Reson 48(2):286–292 Stetz MA, Wand AJ (2016) Accurate determination of rates from non-uniformly sampled relaxation data. J Biomol NMR 65(3–4):157–170 Tibshirani R (1988) Variance stabilization and the bootstrap. Biometrika 75(3):433–444 Ying J, Delaglio F, Torchia DA, Bax A (2017) Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data. J Biomol NMR 68(2, SI):101–118