Boosting the Thermoelectric Properties of PEDOT:PSS via Low‐Impact Deposition of Tin Oxide Nanoparticles

Advanced Electronic Materials - Tập 7 Số 5 - 2021
Jingjin Dong1, D Gerlach1, Panagiotis Koutsogiannis1, Petra Rudolf1, Giuseppe Portale1
1Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands

Tóm tắt

AbstractPoly(3,4‐ethylenedioxy thiophene):poly(styrenesulfonate) (PEDOT:PSS) exhibits valuable characteristics concerning stability, green‐processing, flexibility, high electrical conductivity, and ease of property modulation, qualifying it as one of the most promising p‐type organic conductors for thermoelectric (TE) applications. While blending with inorganic counterparts is considered a good strategy to further improve polymeric TE properties, only a few attempts succeed so far due to inhomogeneous embedding and the non‐ideal organic‐inorganic contact. Here a new strategy to include nanoparticles (NPs) without any ligand termination inside PEDOT:PSS thin films is proposed. Spark discharge‐generated tin oxide NPs (SnOx‐NPs) are “gently” and homogenously deposited through low‐energy diffusion mode. Strong interaction between naked SnOx‐NPs and PSS chains occurs in the topmost layer, causing a structural reorganization towards an improved PEDOT chains crystalline packing at the bottom, providing a positive contribution to the electrical conductivity. Meanwhile, dedoping and energy filtering effect introduced by the SnOx‐NPs cause dramatic Seebeck coefficient enhancement. The optimized power factor of 116 μWm−1 K−2 achieved is more than six times higher than the value found for the film without NPs. This easy and efficient strategy promises well for future mass production of flexible TE devices and the mechanism revealed may inspire future research on TEs and flexible electronics.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201807916

10.1002/anie.201408431

10.1039/c3ee23729j

10.1126/science.1158899

10.1557/mrs2006.44

10.1039/c2ee22777k

10.1016/j.synthmet.2016.11.011

10.1038/nmat3012

10.1039/C5TC01952D

10.1002/aelm.201700181

10.1007/s10854-015-2895-5

10.1021/am100654p

10.1021/acsnano.5b07355

10.1021/am100654p

10.1088/0022-3727/28/1/008

10.1063/1.4937729

10.1088/1361-6528/ab33dd

Manjula N., 2016, Int. J. Nanoelectronics And Materials, 9, 143

10.1021/ma034880o

10.1002/aenm.201502181

10.1039/C6TA09781B

10.1038/s41598-016-0001-8

10.1039/c0jm00672f

10.1002/admi.202000641

10.1021/acsami.9b00934

10.1002/aelm.201800654

10.1039/C8RA05150J

10.1039/C6TA00305B

10.1021/am405024d

10.1002/sia.948

10.1002/sia.740210302

10.1016/0379-6779(94)90054-X

10.1039/C9MH01978B

10.1016/j.apsusc.2019.143967

10.1002/aelm.201700490

10.1039/b822664b

10.1002/adfm.201901789

10.1039/D0EE02490B

10.1039/C8TA08387H

10.1016/j.nanoen.2018.07.002

10.1021/acsami.9b21185

10.1021/acsenergylett.9b00977

10.1002/adma.201701641

10.1002/adma.201704630

10.1016/j.surfrep.2009.07.002

10.1107/S0021889807045086

10.1021/la052922r

10.1021/la802974x