Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Kích thích miễn dịch: Amino-bisphosphonates như là những chất kích thích miễn dịch và sự phá vỡ nội bào của tế bào trình diện trong nhiễm SARS-CoV-2
Tóm tắt
Amino-bisphosphonates như axit zoledronic (ZA) có thể cải thiện hoặc ngăn chặn bệnh COVID-19 nặng thông qua ít nhất ba cơ chế khác nhau: (1) như những chất kích thích miễn dịch, có thể tăng cường sự mở rộng của tế bào γδ T, rất quan trọng trong phản ứng cấp tính ở phổi; (2) như là các chất điều chỉnh tế bào trình diện (DC), giới hạn khả năng của chúng chỉ kích hoạt một phần tế bào T; và (3) như là những chất ức chế prenylation của các GTPase nhỏ trong đường dẫn nội bào của DC để ngăn chặn sự thải lysosome chứa virion SARS-CoV-2. Việc sử dụng ZA hoặc các amino-bisphosphonates khác như là các chất điều chỉnh bệnh COVID-19 nên được xem xét.
Từ khóa
#COVID-19 #amino-bisphosphonates #axit zoledronic #tế bào γδ T #tế bào trình diện #GTPase nhỏ #virionTài liệu tham khảo
Brufsky A, Harker WG, Beck JT, et al. Zoledronic acid inhibits adjuvant letrozole-induced bone loss in postmenopausal women with early breast cancer. J Clin Oncol. 2007;25(7):829–36. https://doi.org/10.1200/JCO.2005.05.3744.
Brufsky AM, Bosserman LD, Caradonna RR, et al. Zoledronic acid effectively prevents aromatase inhibitor–associated bone loss in postmenopausal women with early breast cancer receiving adjuvant letrozole: Z-FAST Study 36-month follow-up results. Clin Breast Cancer. 2009;9(2):77–85. https://doi.org/10.3816/CBC.2009.n.015.
Coleman R, Cameron D, Dodwell D, et al. Adjuvant zoledronic acid in patients with early breast cancer: final efficacy analysis of the AZURE (BIG 01/04) randomised open-label phase 3 trial. Lancet Oncol. 2014;15(9):997–1006. https://doi.org/10.1016/S1470-2045(14)70302-X.
Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Adjuvant bisphosphonate treatment in early breast cancer meta-analyses of individual patient data from randomised trials. Lancet. 2015;386(10001):1353–61. https://doi.org/10.1016/S0140-6736(15)60908-4.
Sugie T, Murata-Hirai K, Iwasaki M, et al. Zoledronic acid-induced expansion of γδ T cells from early-stage breast cancer patients: effect of IL-18 on helper NK cells. Cancer Immunol Immunother. 2013;62(4):677–87. https://doi.org/10.1007/s00262-012-1368-4.
Morrow ES, Roseweir A, Edwards J. The role of gamma delta T lymphocytes in breast cancer: a review. Transl Res. 2019;203:88–96. https://doi.org/10.1016/j.trsl.2018.08.005.
Santini D, Martini F, Fratto ME, et al. In vivo effects of zoledronic acid on peripheral γδ T lymphocytes in early breast cancer patients. Cancer Immunol Immunother. 2009;58(1):31–8. https://doi.org/10.1007/s00262-008-0521-6.
Nussbaumer O, Gruenbacher G, Gander H, Thurnher M. DC-like cell-dependent activation of human natural killer cells by the bisphosphonate zoledronic acid is regulated by γδ T lymphocytes. Blood. 2011;118(10):2743–51. https://doi.org/10.1182/blood-2011-01-328526.
Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc. 2008;83(9):1032–45. https://doi.org/10.4065/83.9.1032.
Hewitt RE, Lissina A, Green AE, Slay ES, Price DA, Sewell AK. The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood gd T cells in response to aminobisphosphonates is inhibited by statins. Clin Exp Immunol. 2005;139(1):101–11. https://doi.org/10.1111/j.1365-2249.2005.02665.x.
Dandekar AA, O’Malley K, Perlman S. Important roles for gamma interferon and NKG2D in gammadelta T-cell-induced demyelination in T-cell receptor beta-deficient mice infected with a coronavirus. J Virol. 2005;79(15):9388–96. https://doi.org/10.1128/JVI.79.15.9388-9396.2005.
Maeurer MJ, Martin D, Walter W, et al. Human intestinal Vdelta1 + lymphocytes recognize tumor cells of epithelial origin. J Exp Med. 1996;183(4):1681–96. https://doi.org/10.1084/jem.183.4.1681.
Chen ZW. Protective immune responses of major Vγ2 Vδ2 T-cell subset in M. tuberculosis infection. Curr Opin Immunol. 2016;42:105–12. https://doi.org/10.1016/j.coi.2016.06.005.
Poccia F, Agrati C, Castilletti C, et al. Anti-severe acute respiratory syndrome coronavirus immune responses: the role played by Vγ9 Vδ2 T Cells. J Infect Dis. 2006;193(9):1244–9. https://doi.org/10.1086/502975.
Tu W, Zheng J, Liu Y, et al. The aminobisphosphonate pamidronate controls influenza pathogenesis by expanding a γδ T cell population in humanized mice. J Exp Med. 2011;208(7):1511–22. https://doi.org/10.1084/jem.20110226.
Zhao J, Zhao J, Van Rooijen N, Perlman S. Evasion by stealth: inefficient immune activation underlies poor T Cell response and severe disease in SARS-CoV-Infected Mice. PLoS Pathog. 2009;5(10):e1000636. https://doi.org/10.1371/journal.ppat.1000636.
Oberg H-H, Peipp M, Kellner C, et al. Novel bispecific antibodies increase γδ T-cell cytotoxicity against pancreatic cancer cells. Cancer Res. 2014;74(5):1349–60. https://doi.org/10.1158/0008-5472.can-13-0675.
Dieli F, Vermijlen D, Fulfaro F, et al. Targeting human γδ T Cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res. 2007;67(15):7450–7. https://doi.org/10.1158/0008-5472.can-07-0199.
Kakimi K, Matsushita H, Murakawa T, Nakajima J. γδ T cell therapy for the treatment of non-small cell lung cancer. Transl Lung Cancer Res Vol 3, No 1 (February 2014) Transl Lung Cancer Res (Immunotherapy lung cancer-Guest Ed Yasuhiko Nishioka); 2013.
Sant S, Jenkins MR, Dash P, et al. Human γδ T-cell receptor repertoire is shaped by influenza viruses, age and tissue compartmentalisation. Clin Transl Immunol. 2019;8(9):e1079–e1079. https://doi.org/10.1002/cti2.1079.
Wilk AJ, Rustagi A, Zhao NQ, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med. 2020. https://doi.org/10.1038/s41591-020-0944-y.
Mamedov MR, Scholzen A, Nair RV, et al. A macrophage colony-stimulating-factor-producing T Cell subset prevents malarial parasitemic recurrence. Immunity. 2018;48(2):350–63. https://doi.org/10.1016/j.immuni.2018.01.009.
Tan L, Wang Q, Zhang D, et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;5(1):33. https://doi.org/10.1038/s41392-020-0148-4.
Chen X, Ling J, Mo P, et al. Restoration of leukomonocyte counts is associated with viral clearance in COVID-19 hospitalized patients. medRxiv. 2020. https://doi.org/10.1101/2020.03.03.20030437.
Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424–32. https://doi.org/10.1002/jmv.25685.
Niu X, Li S, Li P, et al. Analysis of peripheral blood T Cell receptor and B Cell receptor repertoires reveals dynamic adaptive immune responses in COVID-19 patients. SSRN Electron J. 2020. https://doi.org/10.2139/ssrn.3575132.
Tai Y, Wang Q, Korner H, Zhang L, Wei W. Molecular mechanisms of T cells activation by dendritic cells in autoimmune diseases. Front Pharmacol. 2018;9:642. https://doi.org/10.3389/fphar.2018.00642.
Chen Y-J, Chao KSC, Yang Y-C, Hsu M-L, Lin C-P, Chen Y-Y. Zoledronic acid, an aminobisphosphonate, modulates differentiation and maturation of human dendritic cells. Immunopharmacol Immunotoxicol. 2009;31(3):499–508. https://doi.org/10.1080/08923970902814103.
Van Acker HH, Anguille S, Van Tendeloo VF, Lion E. Empowering gamma delta T cells with antitumor immunity by dendritic cell-based immunotherapy [Internet]. Oncoimmunology. 2015;4(8):e1021538. https://doi.org/10.1080/2162402x.2015.1021538.
Lafont V, Liautard J, Sable-Teychene M, Sainte-Marie Y, Favero J. Isopentenyl pyrophosphate, a mycobacterial non-peptidic antigen, triggers delayed and highly sustained signaling in human gamma delta T lymphocytes without inducing eown-modulation of T cell antigen receptor. J Biol Chem. 2001;276(19):15961–7. https://doi.org/10.1074/jbc.m008684200.
Riganti C, Castella B, Massaia M. ABCA1, apoA-I, and BTN3A1: a Legitimate Ménage à Trois in Dendritic Cells. Front Immunol. 2018;9:1246.
Yilla M, Harcourt BH, Hickman CJ, et al. SARS-coronavirus replication in human peripheral monocytes/macrophages. Virus Res. 2005;107(1):93–101. https://doi.org/10.1016/j.virusres.2004.09.004.
Compeer EB, Flinsenberg TWH, van Grein SG, Boes M. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation. Front Immunol. 2012;3(MAR):37. https://doi.org/10.3389/fimmu.2012.00037.
Kellokumpu S. Golgi pH, ion and redox homeostasis: how much do they really matter? Front Cell Dev Biol. 2019;7(JUN):93. https://doi.org/10.3389/fcell.2019.00093.
Fan H-H, Wang L-Q, Liu W-L, et al. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus (2019-nCoV) related coronavirus model. Chin Med J (Engl). 2019;2020:1. https://doi.org/10.1097/cm9.0000000000000797.
Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with COVID-19: an open-label, randomized, controlled trial. MedRxiv. 2020. https://doi.org/10.1101/2020.04.10.20060558.
Geoghegan JL, Holmes EC. The phylogenomics of evolving virus virulence. Nat Rev Genet. 2018;19(12):756–69. https://doi.org/10.1038/s41576-018-0055-5.
Lu W, Zheng B-J, Xu K, et al. Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc Natl Acad Sci. 2006;103(33):12540–5. https://doi.org/10.1073/pnas.0605402103.
Castaño-Rodriguez C, Honrubia JM, Gutiérrez-Álvarez J, et al. Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis. MBio. 2018;9(3):e02325. https://doi.org/10.1128/mBio.02325-17.
Schwarz S, Wang K, Yu W, Sun B, Schwarz W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res. 2011;90(1):64–9. https://doi.org/10.1016/j.antiviral.2011.02.008.
Genomic epidemiology of novel coronavirus - Global subsampling [Internet]. Nextstrain. [cited 2020 Apr 19]; https://nextstrain.org/ncov/global?branchLabel=aa&c=gt-S_614.
Issa E, Merhi G, Panossian B, Salloum T, Tokajian S. SARS-CoV-2 and ORF3a: non-synonymous mutations and polyproline regions. bioRxiv. 2020. https://doi.org/10.1101/2020.03.27.012013.
Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020. https://doi.org/10.1038/s41586-020-2286-9.
Okamoto S, Jiang Y, Kawamura K, et al. Zoledronic acid induces apoptosis and S-phase arrest in mesothelioma through inhibiting Rab family proteins and topoisomerase II actions. Cell Death Dis. 2014;5(11):e1517–e1517. https://doi.org/10.1038/cddis.2014.475.
Coxon FP, Helfrich MH, Van Hof R, et al. Protein geranylgeranylation is required for osteoclast formation, function, and survival: inhibition by bisphosphonates and GGTI-298. J Bone Miner Res. 2000;15(8):1467–76. https://doi.org/10.1359/jbmr.2000.15.8.1467.
Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol. 2014;6(11):a022616. https://doi.org/10.1101/cshperspect.a022616.
Puissant E, Boonen M. Monocytes/macrophages upregulate the hyaluronidase HYAL1 and adapt its subcellular trafficking to promote extracellular residency upon differentiation into osteoclasts. PLoS ONE. 2016;11(10):e0165004–e0165004. https://doi.org/10.1371/journal.pone.0165004.
Itzstein C, Coxon FP, Rogers MJ. The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases. 2011;2(3):117–30. https://doi.org/10.4161/sgtp.2.3.16453.
Xiao Y, Zijl S, Wang L, et al. Identification of the common origins of osteoclasts, macrophages, and dendritic cells in human hematopoiesis. Stem cell reports. 2015;4(6):984–94. https://doi.org/10.1016/j.stemcr.2015.04.012.
Wakkach A, Mansour A, Dacquin R, et al. Bone marrow microenvironment controls the in vivo differentiation of murine dendritic cells into osteoclasts. Blood. 2008;112(13):5074–83. https://doi.org/10.1182/blood-2008-01-132787.
Jeon O-C, Seo D-H, Kim H-S, Byun Y, Park JW. Oral delivery of zoledronic acid by non-covalent conjugation with lysine-deoxycholic acid: In vitro characterization and in vivo anti-osteoporotic efficacy in ovariectomized rats. Eur J Pharm Sci. 2016;82:1–10. https://doi.org/10.1016/j.ejps.2015.11.004.
Kunzmann V, Bauer E, Feurle J, Tony Hans-Peter FW, Wilhelm M. Stimulation of γδ T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood. 2000;96(2):384–92. https://doi.org/10.1182/blood.V96.2.384.