Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Kỹ thuật tái tạo mô xương sử dụng tế bào sinh mạch tủy
Tóm tắt
Các khuyết tật mô xương gây ra một vấn đề kinh tế - xã hội đáng kể, và xương là mô thường xuyên được cấy ghép bên cạnh máu. Cấy ghép tự thân được coi là phương pháp điều trị chuẩn vàng cho các khuyết tật xương, nhưng tính hữu dụng của nó bị hạn chế do tỷ lệ bệnh tật tại vị trí cho. Vì vậy, nhiều nghiên cứu đã tập trung vào kỹ thuật tạo mô xương như một phương pháp thay thế đầy hứa hẹn cho việc sửa chữa các khuyết tật xương. Tế bào sinh mạch tủy (MSCs) được coi là nguồn tế bào tiềm năng cho kỹ thuật tạo mô xương. Trong kỹ thuật tạo mô xương sử dụng MSCs, xương được hình thành thông qua quá trình xương hóa màng và xương hóa sụn dưới tác động của các yếu tố kích thích tạo xương. Quá trình hình thành mạch máu là một quá trình phức tạp được trung gian bởi nhiều yếu tố tăng trưởng và là rất quan trọng cho việc tái tạo xương. Yếu tố tăng trưởng nội mô mạch máu đóng vai trò quan trọng trong tái tạo mô xương bằng cách thúc đẩy sự di chuyển và biệt hóa của các nguyên bào xương, và bằng cách gây ra hình thành mạch máu. Các vật liệu giáo được sử dụng trong kỹ thuật tạo mô xương bao gồm các thành phần tự nhiên của xương, chẳng hạn như phosphate canxi và collagen I, cùng với các polymer phân hủy sinh học như poly(lactide-co-glycolide). Tuy nhiên, vẫn chưa tìm thấy vật liệu giáo lý tưởng cho kỹ thuật tạo mô xương. Kỹ thuật tạo mô xương đã được sử dụng thành công để điều trị các khuyết tật xương trong một số thử nghiệm lâm sàng ở người nhằm tái tạo các khuyết tật xương. Qua việc nghiên cứu sinh học của MSC và phát triển các vật liệu giáo mới, chúng ta sẽ có thể phát triển những kỹ thuật tạo mô xương tiên tiến hơn trong tương lai.
Từ khóa
#tái tạo mô xương #tế bào sinh mạch tủy #cấy ghép tự thân #tạo mô #hình thành mạch #kỹ thuật tạo mô xươngTài liệu tham khảo
Rose, F. R. and R. O. Oreffo (2002) Bone tissue engineering: hope vs hype.Biochem. Biophys. Res. Commun. 292 1–7.
Bauer, T. W. and G. F. Muschler (2000) Bone graft materials. An overview of the basic science.Clin. Orthop. Relat. Res. 371: 10–27.
Xu, H. H. and C. G. Simon, Jr. (2005) Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility.Biomaterials 26: 1337–1348.
Derubeis, A. R. and R. Cancedda (2004) Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances.Ann. Biomed. Eng. 32: 160–165.
Caplan, A. I. and S. P. Bruder (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century.Trends Mol. Med. 7: 259–264.
Petite, H., V. Viateau, W. Bensaid, A. Meunier, C. de Pollak, M. Bourguignon, K. Oudina, L. Sedel, and G. Guillemin (2000) Tissue-engineered bone regenerationNat. Biotechnol. 18: 959–963.
Shang, Q., Z. Wang, W. Liu, Y. Shi, L. Cui, and Y. Cao (2001) Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells.J. Craniofac. Surg. 12: 586–593: discussion 594–595.
Kim, H., H. Suh, S. A. Jo, H. W. Kim, J. M. Lee, E. H. Kim, Y. Reinwald, S. H. Park, B. H. Min, and I. Jo (2005)In vivo bone formation by human marrow stromal cells in biodegradable scaffolds that release dexamethasone and ascorbate-2-phosphate.Biochem. Biophys. Res. Commun. 332: 1053–1060.
Friedenstein, A. J., K. V. Petrakova, A. I. Kurolesova, and G. P. Frolova (1968) Heterotopic of bone marrow Analysis of precursor cells for osteogenic and hematopoietic tissues.Transplantation 6: 230–247.
Friedenstein, A. J., J. F. Gorskaja, and N. N. Kulagina (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs.Exp. Hematol. 4: 267–274.
Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak (1999) Multilineage potential of adult human mesenchymal stem cells.Science 284: 143–147.
Kuznetsov, S. A., P. H. Krebsbach, K. Satomura, J. Kerr, M. Riminucci, D. Benayahu, and P. G. Robey (1997) Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantationin vivo.J. Bone Miner. Res. 12: 1335–1347.
Muraglia, A., R. Cancedda, and R. Quarto (2000) Clonal mesenchymal progenitors from human bone marrow differentiatein vitro according to a hierarchical model.J. Cell Sci. 113 (Pt 7): 1161–1166.
Gregory, C. A., J. Ylostalo, and D. J. Prockop (2005) Adult bone marrow stem/progenitor cells (MSCs) are preconditioned by microenvironmental “niches” in culture: a two-stage hypothesis for regulation of MSC fate.Sci. STKE 2005: pe37.
Digirolamo, C. M., D. Stokes, D. Colter, D. G. Phinney, R. Class, and D. J. Prockop (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate.Br. J. Haematol. 107: 275–281.
Shi, S., S. Gronthos, S. Chen, A. Reddi, C. M. Counter, P. G. Robey, and C. Y. Wang (2002) Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression.Nat. Biotechnol. 20: 587–591.
Simonsen, J. L., C. Rosada, N. Serakinci, J. Justesen, K. Stenderup, S. L. Rattan, T. G. Jensen, and M. Kassem (2002) Telomcrase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells.Nat. Biotechnol. 20: 592–596.
Gronthos, S., S. Chen, C. Y. Wang, P. G. Robey, and S. Shi (2003) Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin.J. Bone Miner. Res. 18: 716–722.
Sekiya, I., B. L. Larson, J. R. Smith, R. Pochampally, J. G. Cui, and D. J. Prockop (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality.Stem Cells 20: 530–541.
Colter, D. C., I. Sekiya, and D. J. Prockop (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells.Proc. Natl. Acad. Sci. USA 98: 7841–7845.
Colter, D. C., R. Class, C. M. DiGirolamo, and D. J. Prockop (2000) Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow.Proc. Natl. Acad Sci. USA 97: 3213–3218.
Kim, H., J. H. Lee, and H. Suh (2003) Interaction of mesenchymal stem cells and osteoblasts forin vitro osteogenesis.Yonsci Med. J. 44: 187–197.
Kim, H., H. W. Kim, and H. Suh (2003) Sustained release of ascorbate-2-phosphate and dexamethasone from porous PLGA scaffolds for bone tissue engineering using mesenchy mal stem cells.Biomaterials 24: 4671–4679.
Jorgensen, N. R., Z. Henriksen, O. H. Sorensen, and R. Civitelli (2004) Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype; validation of anin vitro model for human bone marrow-derived primary osteoblasts.Steroids 69: 219–226.
Cheng, S. L., J. W. Yang, L. Rifas, S. F. Zhang, and L. V. Avioli (1994) Differentiation of human bone marrow osteogenic stromal cellsin vitro: induction of the osteoblast phenotype by dexamethasone.Endocrinology 134: 277–286.
Huang, W., B. Carlsen, I. Wulur, G. Rudkin, K. Ishida, B. Wu, D. T. Yamaguchi, and T. A. Miller (2004) BMP-2 exerts differential effects on differentiation of rabbit bone marrow stromal cells grown in two-dimensional and three-dimensional systems and is required forin vitro bone formation in a PLGA scaffold.Exp. Cell Res. 299: 325–334.
Bruder, S. P., K. H. Kraus, V. M. Goldberg, and S. Kadiyala (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects.J. Bone Joint Surg. Am. 80: 985–996.
Noel, D., D. Gazit, C. Bouquet, F. Apparailly, C. Bony, P. Plence, V. Millet, G. Turgeman, M. Perricaudet, J. Sany, and C. Jorgensen (2004) Short-term BMP-2 expression is sufficient forin vivo osteochondral differentiation of mesenchymal stem cells.Stem Cells 22: 74–85.
Diefenderfer, D. L., A. M. Osyczka, G. C. Reilly, and P. S. Leboy (2003) BMP responsiveness in human mesenchymal stem cells.Connect. Tissue Res. 44 Suppl 1: 305–311.
Osyczka, A. M., D. L. Diefenderfer, G. Bhargave, and P. S. Leboy (2004) Different effects of BMP-2 on marrow stromal cells from human and rat bone.Cells Tissues Organs 176: 109–119.
Kronenberg, H. M. (2003) Developmental regulation of the growth plate.Nature 423: 332–336.
Chung, U. I., H. Kawaguchi, T. Takato, and K. Nakamura (2004) Distinct osteogenic mechanisms of bones of distinct origins.J. Orthop. Sci. 9: 410–414.
Choi, I. H., C. Y. Chung, T. J. Cho, and W. J. Yoo (2002) Angiogenesis and mineralization during distraction osteogenesis.J. Kor. Med. Sci. 17: 435–447.
Einhorn, T. A. (2005) The science of fracture healing.J. Orthop. Trauma 19 Suppl: S4-S6.
Thompson, Z., T. Miclau, D. Hu, and J. A. Helms (2002) A model for intramembranous ossification during fracture healing.J. Orthop. Res. 20: 1091–1098.
Sampath, T. K., J. C. Maliakal, P. V. Hauschka, W. K. Jones, H. Sasak, R. F. Tucker, K. H. White, J. E. Coughlin, M. M. Tucker, R. H. Panget al. (1992) Recombinant human osteogenic protein-1 (hOP-1) induces new bone formationin vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiationin vitro.J. Biol. Chem. 267: 20352–20362.
Chen, Y., K. M. Cheung, H. F. Kung, J. C. Leong, W. W. Lu, and K. D. Luk (2002)In vivo new bone formation by direct transfer of adenoviral-mediated bone morphogenetic protein-4 gene.Biochem. Biophys. Res. Commun. 298: 121–127.
Simmons, C. A., E. Alsberg, S. Hsiong, W. J. Kim, and D. J. Mooney (2004) Dual growth factor delivery and controlled scaffold degradation enhancein vivo bone formation by transplanted bone marrow stromal cells.Bone 35: 562–569.
Sekiya, I., B. L. Larson, J. T. Vuoristo, R. L. Reger, and D. J. Prockop (2005) Comparison of effect of BMP-2.-4 and-6 onin vitro cartilage formation of human adult stem cells from bone marrow stroma.Cell Tissue Res. 320: 269–276.
Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo (1998)In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells.Exp. Cell Res. 238: 265–272.
Jaiswal, N., S. E. Haynesworth, A. I. Caplan, and S. P. Bruder (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cellsin vitro.J. Cell. Biochem. 64: 295–312.
Schacke, H., W. D. Docke, and K. Asadullah (2002) Mechanisms involved in the side effects of glucocorticoids.Pharmacol. Ther. 96: 23–43.
Attisano, L. and J. L. Wrana (2002) Signal transduction by the TGF-beta superfamily.Science 296: 1646–1647.
Childs, S. G. (2005) Osteonecrosis: death of bone cells.Orthop. Nurs. 24: 295–301; quiz 302–303.
Hausman, M. R., M. B. Schaffler, and R. I. Majeska (2001) Prevention of fracture healing in rats by an inhibitor of angiogenesis.Bone 29: 560–564.
Fang, T. D., A. Salim, W. Xia, R. P. Nacamuli, S. Guccione, H. M. Song, R. A. Carano, E. H. Filvaroff, M. D. Bednarski, A. J. Giaccia, and M. T. Longaker (2005) Angiogenesis is required for successful bone induction during distraction osteogenesis.J. Bone Miner. Res. 20: 1114–1124.
Maes, C., P. Carmeliet, K. Moermans, I. Stockmans, N. Smets, D. Collen, R. Bouillon, and G. Carmeliet (2002) Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188.Mech. Dev. 111: 61–73.
Gerber, H. P. and N. Ferrara (2000) Angiogenesis and bone growth.Trends Cardiovasc. Med. 10: 223–228.
Risau, W. (1997) Mechanisms of angiogenesis.Nature 386: 671–674.
Yancopoulos, G. D., S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash (2000) Vascular-specific growth factors and blood vessel formation.Nature 407: 242–248.
Polverini, P. J. (2002) Antiogenesis in health and disease: insights into basic mechanisms and therapeutic opportunities.J. Dent. Educ. 66: 962–975.
Street, J., M. Bao, L. deGuzman, S. Bunting, F. V. Peale, Jr., N. Ferrara, H. Steinmetz, J. Hoeffel, J. L. Cleland, A. Daugherty, N. van Bruggen, H. P. Redmond, R. A. Carano, and E. H. Filvaroff (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover.Proc. Natl. Acad. Sci. USA 99: 9656–9661.
Huang, Y. C., D. Kaigler, K. G. Rice, P. H. Krebsbach, and D. J. Mooney (2005) Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration.J. Bone Miner. Res. 20: 848–857.
Kaigler, D., Z. Wang, K. Horger, D. J. Mooney, and P. H. Krebsbach (2006) VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects.J. Bone Miner. Res. 21: 735–744.
Leach, J. K., D. Kaigler, Z. Wang, P. H. Krebsbach, and D. J. Mooney (2006) Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration.Biomaterials 27: 3249–3255.
Kaigler, D., P. H. Krebsbach, P. J. Polverini, and D. J. Mooney (2003) Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells.Tissue Eng. 9: 95–103.
Mayr-Wohlfart, U., J. Waltenberger, H. Hausser, S. Kessler, K. P. Gunther, C. Dehio, W. Puhl, and R. E. Brenner (2002) Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts.Bone 30: 472–477.
Zelzer, E., W. McLean, Y. S. Ng, N. Fukai, A. M. Reginato, S. Lovejoy, P. A. D'Amore, and B. R. Olsen (2002) Skeletal defects in VEGF (120/120) mice reveal multiple roles for VEGF in skeletogenesis.Development 129: 1893–1904.
Bouletreau, P. J., S. M. Warren, J. A. Spector, Z. M. Peled, R. P. Gerrets, J. A. Greenwald, and M. T. Longaker (2002) Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing.Plast. Reconstr. Surg. 109: 2384–2397.
El-Ghannam, A. (2005) Bone reconstruction: from bioceramics to tissue engineering.Expert Rev. Med. Devices 2: 87–101.
Whang, K., D. C. Tsai, E. K. Nam, M. Aitken, S. M. Sprague, P. K. Patel, and K. E. Healy (1998) Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds.J. Biomed. Mater. Res. 42: 491–499.
Hsiong, S. X. and D. J. Mooney (2006) Regeneration of vascularized bone.Periodontol. 2000 41: 109–122.
Kotoh, H., T. Kitakoji, H. Tsuchiya, H. Mitsuyama, H. Nakamura, M. Katoh, and N. Ishiguro (2004) Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis: a preliminary result of three cases.Bone 35: 892–898.
Schimming, R. and R. Schmelzeisen (2004) Tissue-engineered bone for maxillary sinus augmentation.J. Oral Maxillofac. Surg. 62: 724–729.
Vacanti, C. A., L. J. Bonassar, M. P. Vacanti, and J. Shufflebarger (2001) Replacement of an avulsed phalanx with tissue-engineered bone.N. Engl. J. Med. 344: 1511–1514.