Bone regenerative medicine: classic options, novel strategies, and future directions

Ahmad Oryan1, Soodeh Alidadi1, Ali Moshiri2,3, Nicola Maffulli4,5
1Dept. of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
2Department of Tissue Engineering and Regenerative Medicine, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
3Division of Surgery and Radiology, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
4Centre for Sports and Exercise Medicine, Queen Mary, University of London Barts and The London School of Medicine and Dentistry, Mile End Hospital, London, UK
5Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Salerno, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Egermann M, Lill CA, Griesbeck K, Evans CH, Robbins PD, Schneider E, Baltzer AW: Effect of BMP-2 gene transfer on bone healing in sheep. Gene Ther. 2006, 13: 1290-1299. 10.1038/sj.gt.3302785.

Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D: Orthopaedic applications of bone graft and graft substitutes: a review. Indian J Med Res. 2010, 132: 15-30.

Bigham AS, Dehghani SN, Shafiei Z, Torabi Nezhad S: Xenogenic demineralized bone matrix and fresh autogenous cortical bone effects on experimental bone healing: radiological, histopathological and biomechanical evaluation. J Orthop Traumatol. 2008, 9: 73-80. 10.1007/s10195-008-0006-6.

Bansal MR, Bhagat SB, Shukla DD: Bovine cancellous xenograft in the treatment of tibial plateau fractures in elderly patients. Int Orthop. 2009, 33: 779-784. 10.1007/s00264-008-0526-y.

Hegde C, Shetty V, Wasnik S, Ahammed I, Shetty V: Use of bone graft substitute in the treatment for distal radius fractures in elderly. Eur J Orthop Surg Traumatol. 2012, doi:10.1007/s00590-012-1057-1

Scaglione M, Fabbri L, Dell’omo D, Gambini F, Guido G: Long bone nonunions treated with autologous concentrated bone marrow-derived cells combined with dried bone allograft. Musculoskelet Surg. 2013, doi:10.1007/s12306-013-0271-2

Elsalanty ME, Genecov DG: Bone grafts in craniofacial surgery. Craniomaxillofac Trauma Reconstr. 2009, 2: 125-134. 10.1055/s-0029-1215875.

Albrektsson T, Johansson C: Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001, 10: S96-S101. 10.1007/s005860100282.

Brydone AS, Meek D, Maclaine S: Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H. 2010, 224: 1329-1343.

Dimitriou R, Jones E, McGonagle D, Giannoudis PV: Bone regeneration: current concepts and future directions. BMC Med. 2011, 9: 66-10.1186/1741-7015-9-66. doi:10.1186/1741-7015-9-66

Keskin D, Gundogdu C, Atac AC: Experimental comparison of bovine-derived xenograft, xenograft-autologous bone marrow and autogenous bone graft for the treatment of bony defects in the rabbit ulna. Med Princ Pract. 2007, 16: 299-305. 10.1159/000102153.

Athanasiou VT, Papachristou DJ, Panagopoulos A, Saridis A, Scopa CD, Megas P: Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: an experimental study in rabbits. Med Sci Monit. 2010, 16: BR24-BR31.

Ehrler DM, Vaccaro AR: The use of allograft bone in lumbar spine surgery. Clin Orthop Relat Res. 2000, 1: 38-45.

Shafiei Z, Bigham AS, Dehghani SN, Nezhad ST: Fresh cortical autograft versus fresh cortical allograft effects on experimental bone healing in rabbits: radiological, histopathological and biomechanical evaluation. Cell Tissue Bank. 2009, 10: 19-26. 10.1007/s10561-008-9105-0.

Parizi AM, Oryan A, Shafiei-Sarvestani Z, Bigham AS: Human platelet rich plasma plus Persian Gulf coral effects on experimental bone healing in rabbit model: radiological, histological, macroscopical and biomechanical evaluation. J Mater Sci Mater Med. 2012, 23: 473-483. 10.1007/s10856-011-4478-1.

Yazar S: Onlay bone grafts in head and neck reconstruction. Semin Plast Surg. 2010, 24: 255-261. 10.1055/s-0030-1263067.

Moshiri A, Oryan A: Role of tissue engineering in tendon reconstructive surgery and regenerative medicine: current concepts, approaches and concerns. Hard Tissue. 2012, 1: 11-

Oryan A, Alidadi S, Moshiri A: Current concerns regarding healing of bone defects. Hard Tissue. 2013, 2: 13-

Silva RV, Camilli JA, Bertran CA, Moreira NH: The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats. Int J Oral Maxillofac Surg. 2005, 34: 178-184. 10.1016/j.ijom.2004.06.005.

Putzier M, Strube P, Funk JF, Gross C, Monig HJ, Perka P, Pruss A: Allogenic versus autologous cancellous bone in lumbar segmental spondylodesis: a randomized prospective study. Eur Spine J. 2009, 18: 687-695. 10.1007/s00586-008-0875-7.

Gomes KU, Carlini JL, Biron C, Rapoport A, Dedivitis RA: Use of allogeneic bone graft in maxillary reconstruction for installation of dental implants. J Oral Maxillofac Surg. 2008, 66: 2335-2338. 10.1016/j.joms.2008.06.006.

Parikh SN: Bone graft substitutes: past, present, future. J Postgrad Med. 2002, 48: 142-148.

Greenwald AS, Boden SD, Goldberg VM, Yusuf K, Laurencin CT, Rosier RN: Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg. 2001, 83 (Suppl 2): S98-S103.

Keating JF, McQueen MM: Substitutes for autologous bone graft in orthopaedic trauma. J Bone Joint Surg (Br). 2001, 83: 3-8. 10.1302/0301-620X.83B1.11952.

Di Martino A, Liverani L, Rainer A, Salvatore G, Trombetta M, Denaro V: Electrospun scaffolds for bone tissue engineering. Musculoskelet Surg. 2011, 95: 69-80. 10.1007/s12306-011-0097-8.

Rizzo M, Moran SL: Vascularized bone grafts and their applications in the treatment of carpal pathology. Semin Plast Surg. 2008, 22: 213-227. 10.1055/s-2008-1081404.

Bostrom MP, Seigerman DA: The clinical use of allografts, demineralized bone matrices, synthetic bone graft substitutes and osteoinductive growth factors: a survey study. HSS J. 2005, 1: 9-18. 10.1007/s11420-005-0111-5.

Allman AJ, McPherson TB, Badylak SF, Merrill LC, Kallakury B, Sheehan C, Raeder RH, Metzger DW: Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation. 2001, 71: 1631-1640. 10.1097/00007890-200106150-00024.

Badylak SF, Gilbert TW: Immune response to biologic scaffold materials. Semin Immunol. 2008, 20: 109-116. 10.1016/j.smim.2007.11.003.

Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF: Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009, 30: 1482-1491. 10.1016/j.biomaterials.2008.11.040.

Valentin JE, Stewart-Akers AM, Gilbert TW, Badylak SF: Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng Part A. 2009, 15: 1687-1694. 10.1089/ten.tea.2008.0419.

Zimmermann G, Moghaddam A: Allograft bone matrix versus synthetic bone graft substitutes. Injury. 2011, 42: S16-S21.

Pereira-Junior OC, Rahal SC, Iamaguti P, Felisbino SL, Pavan PT, Vulcano LC: Comparison between polyurethanes containing castor oil (soft segment) and cancellous bone autograft in the treatment of segmental bone defect induced in rabbits. J Biomater Appl. 2007, 21: 283-297.

Janicki P, Schmidmaier G: What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Injury. 2011, 42: S77-S81.

Oryan A, Meimandi-Parizi AH, Shafiei-Sarvestani Z, Bigham AS: Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: radiological, macroscopical, histopathological, ultrastructural and biomechanical studies. Cell Tissue Bank. 2012, 13: 639-651. 10.1007/s10561-011-9285-x.

Patel JC, Watson K, Joseph E, Garcia J, Wollstein R: Long-term complications of distal radius bone grafts. J Hand Surg [Am]. 2003, 28: 784-788. 10.1016/S0363-5023(03)00364-2.

Lee M, Song HK, Yang KH: Clinical outcomes of autogenous cancellous bone grafts obtained through the portal for tibial nailing. Injury. 2012, 43: 1118-1123. 10.1016/j.injury.2012.02.021.

Mauffrey C, Madsen M, Bowles RJ, Seligson D: Bone graft harvest site options in orthopaedic trauma: a prospective in vivo quantification study. Injury. 2012, 43: 323-326. 10.1016/j.injury.2011.08.029.

Vittayakittipong P, Nurit W, Kirirat P: Proximal tibial bone graft: the volume of cancellous bone, and strength of decancellated tibias by the medial approach. Int J Oral Maxillofac Surg. 2012, 41: 531-536. 10.1016/j.ijom.2011.10.023.

Bayod J, Becerro-de-Bengoa-Vallejo R, Losa-Iglesias ME, Doblare M: Mechanical stress redistribution in the calcaneus after autologous bone harvesting. J Biomech. 2012, 45: 1219-1226. 10.1016/j.jbiomech.2012.01.043.

Garg B, Goyal T, Kotwal PP, Sankineani SR, Tripathy SK: Local distal radius bone graft versus iliac crest bone graft for scaphoid nonunion: a comparative study. Musculoskelet Surg. 2012, doi:10.1007/s12306-012-0219-y

Mahato NK: Characterization of cortico-cancellous bone along the iliac crest: focus on graft harvesting. Surg Radiol Anat. 2011, 33: 433-437. 10.1007/s00276-010-0752-z.

Horne LT, Murray PM, Saha S, Sidhar K: Effects of distal radius bone graft harvest on the axial compressive strength of the radius. J Hand Surg [Am]. 2012, 35: 262-266.

Kitzinger HB, Karle B, Prommersberger KJ, van Schoonhoven J, Frey M: Four-corner arthrodesis-does the source of graft affect bony union rate? Iliac crest versus distal radius bone graft. J Plast Reconstr Aesthet Surg. 2012, 65: 379-383. 10.1016/j.bjps.2011.09.043.

Muller MA, Frank A, Briel M, Valderrabano V, Vavken P, Entezari V, Mehrkens A: Substitutes of structural and non-structural autologous bone grafts in hind foot arthrodeses and osteotomies: a systematic review. BMC Musculoskelet Disord. 2012, 14: 59-doi:10.1186/1471-2474-14-59

Malinin T, Temple HT: Comparison of frozen and freeze-dried particulate bone allografts. Cryobiology. 2007, 55: 167-170. 10.1016/j.cryobiol.2007.05.007.

Folsch C, Mittelmeier W, Bilderbeek U, Timmesfeld N, von Garrel T, Peter Matter H: Effect of storage temperature on allograft bone. Transfus Med Hemother. 2012, 39: 36-40. 10.1159/000335647.

Develioglu H, Unver Saraydin S, Kartal U: The bone-healing effect of a xenograft in a rat calvarial defect model. Dent Mater J. 2009, 28: 396-400. 10.4012/dmj.28.396.

Oryan A, Moshiri A, Meimandi Parizi AH, Raayat Jahromi A: Repeated administration of exogenous sodium-hyaluronate improved tendon healing in an in vivo transection model. J Tissue Viability. 2012, 21: 88-102. 10.1016/j.jtv.2012.06.002.

Emami MJ, Oryan A, Saeidinasab H, Meimandi-Parizi A: The effect of bone marrow graft on bone healing: a radiological and biomechanical study. Iran J Med Sci. 2002, 27: 63-66.

Bigham AS, Dehghani SN, Shafiei Z, Nezhad ST: Experimental bone defect healing with xenogenic demineralized bone matrix and bovine fetal growth plate as a new xenograft: radiological, histopathological and biomechanical evaluation. Cell Tissue Bank. 2009, 10: 33-41. 10.1007/s10561-008-9107-y.

Keles GC, Sumer M, Cetinkaya BO, Tutkun F, Simsek SB: Effect of autogenous cortical bone grafting in conjunction with guided tissue regeneration in the treatment of intraosseous periodontal defects. Eur J Dent. 2010, 4: 403-411.

Faldini C, Miscione MT, Acri F, Chehrassan M, Bonomo M, Giannini S: Use of homologous bone graft in the treatment of aseptic forearm nonunion. Musculoskelet Surg. 2011, 95: 31-35.

Price CT, Connolly JF, Carantzas AC, Ilyas I: Comparison of bone grafts for posterior spinal fusion in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2003, 28: 793-798.

Emami MJ, Oryan A, Meimandi-Parizi AM, Kasraee R, Tanideh N, Mehrabani D: Bone marrow transplantation and autogenic cancellous bone grafting in healing of segmental radial defects: an animal study. J Appl Anim Res. 2006, 30: 69-72.

Bigham-Sadegh A, Karimi I, Alebouye M, Shafie-Sarvestani Z, Oryan A: Evaluation of bone healing in canine tibial defects filled with cortical autograft, commercial-DBM, calf fetal DBM, omentum and omentum-calf fetal DBM. J Vet Sci. 2013, 14 (3): 337-343. 10.4142/jvs.2013.14.3.337.

Elder BD, Eleswarapu SV, Athanasiou KA: Extraction techniques for the decellularization of tissue engineered articular cartilage constructs. Biomaterials. 2009, 30: 3749-3756. 10.1016/j.biomaterials.2009.03.050.

Vavken P, Joshi S, Murray MM: Triton-X is most effective among three decellularization agents for ACL tissue engineering. J Orthop Res. 2009, 27: 1612-1618. 10.1002/jor.20932.

Zhang AY, Bates SJ, Morrow E, Pham H, Pham B, Chang J: Tissue-engineered intrasynovial tendons: optimization of acellularization and seeding. J Rehabil Res Dev. 2009, 46: 489-498. 10.1682/JRRD.2008.07.0086.

Gui L, Chan SA, Breuer CK, Niklason LE: Novel utilization of serum in tissue decellularization. Tissue Eng Part C Methods. 2010, 16: 173-184. 10.1089/ten.tec.2009.0120.

Rose FR, Oreffo RO: Bone tissue engineering: hope vs hype. Biochem Biophys Res Commun. 2002, 292: 1-7. 10.1006/bbrc.2002.6519.

Adeyemo WL, Reuther T, Bloch W, Korkmaz Y, Fischer JH, Zoller JE, Kuebler AC: Healing of onlay mandibular bone grafts covered with collagen membrane or bovine bone substitutes: a microscopical and immunohistochemical study in the sheep. Int J Oral Maxillofac Surg. 2008, 37: 651-659. 10.1016/j.ijom.2008.02.005.

Thuaksuban N, Nuntanaranont T, Pripatnanont P: A comparison of autogenous bone graft combined with deproteinized bovine bone and autogenous bone graft alone for treatment of alveolar cleft. Int J Oral Maxillofac Surg. 2010, 39: 1175-1180. 10.1016/j.ijom.2010.07.008.

Vaccaro AR: The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics. 2002, 25: S571-S578.

Nandini VV, Venkatesh KV, Nair KC: Alginate impressions: a practical perspective. J Conserv Dent. 2008, 11: 37-41. 10.4103/0972-0707.43416.

Ariani MD, Matsuura A, Hirata I, Kubo T, Kato K, Akagawa Y: New development of carbonate apatite-chitosan scaffold based on lyophilization technique for bone tissue engineering. Dent Mater J. 2013, 32: 317-325. 10.4012/dmj.2012-257.

Lee CH, Singla A, Lee Y: Biomedical applications of collagen. Int J Pharm. 2001, 221: 1-22. 10.1016/S0378-5173(01)00691-3.

dos Santos LA, de Oliveira LC, da Silva Rigo EC, Carrodeguas RG, Boschi AO, de Arruda Fonseca AC: Fiber reinforced calcium phosphate cement. Artif Organs. 2000, 24: 212-216. 10.1046/j.1525-1594.2000.06541.x.

Oryan A, Moshiri A, Sharifi P: Advances in injured tendon engineering with emphasis on the role of collagen implants. Hard Tissue. 2012, 1: 12-

Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN: Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am. 2001, 83: 98-103.

Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS: Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011, doi:10.1155/2011/290602

Chen G, Ushida T, Tateishi T: Scaffold design for tissue engineering. Macromol Biosci. 2002, 2: 67-77. 10.1002/1616-5195(20020201)2:2<67::AID-MABI67>3.0.CO;2-F.

Patel H, Bonde M, Srinivasan G: Biodegradable polymer scaffold for tissue engineering. Trends Biomater Artif Organs. 2011, 25: 20-29.

Oryan A, Moshiri A: Recombinant fibroblast growth protein enhances healing ability of experimentally induced tendon injury in vivo. J Tissue Eng Regen Med. 2012, doi:10.1002/term.1534

Kikuchi M: Hydroxyapatite/collagen bone-like nanocomposite. Biol Pharm Bull. 2013, 36 (11): 1666-1669. 10.1248/bpb.b13-00460.

Liu M, Yu X, Huang F, Cen S, Zhong G, Xiang Z: Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair. Orthopedics. 2013, 36 (11): 868-873. 10.3928/01477447-20131021-10.

Ohba S, Tei Chung YU: Bone and cartilage diseases and regeneration. Identification of osteogenic signal and the development of artificial bones. Clin Calcium. 2013, 23 (12): 1723-1729.

Pastorino L, Dellacasa E, Scaglione S, Giulianelli M, Sbrana F, Vassalli M, Ruggiero C: Oriented collagen nanocoatings for tissue engineering. Colloids Surf B. 2013, doi:10.1016/j.colsurfb.2013.10.026

Ma J, Both SK, Yang F, Cui FZ, Pan J, Meijer GJ, Jansen JA, van den Beucken JJ: Concise review: cell-based strategies in bone tissue engineering and regenerative medicine. Stem Cells Transl Med. 2014, 3 (1): 98-107. 10.5966/sctm.2013-0126.

Lee SS, Huang BJ, Kaltz SR, Sur S, Newcomb CJ, Stock SR, Shah RN, Stupp SI: Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials. 2013, 34 (2): 452-459. 10.1016/j.biomaterials.2012.10.005.

Hamilton PT, Jansen MS, Ganesan S, Benson RE, Hyde-Deruyscher R, Beyer WF, Gile JC, Nair SA, Hodges JA, Grøn H: Improved bone morphogenetic protein-2 retention in an injectable collagen matrix using bifunctional peptides. PLoS One. 2013, 8 (8): e70715-10.1371/journal.pone.0070715.

Yamada S, Nagaoka H, Terajima M, Tsuda N, Hayashi Y, Yamauchi M: Effects of fish collagen peptides on collagen post-translational modifications and mineralization in an osteoblastic cell culture system. Dent Mater J. 2013, 32 (1): 88-95. 10.4012/dmj.2012-220.

Zugravu MV, Smith RA, Reves BT, Jennings JA, Cooper JO, Haggard WO, Bumgardner JD: Physical properties and in vitro evaluation of collagen-chitosan-calcium phosphate microparticle-based scaffolds for bone tissue regeneration. J Biomater Appl. 2013, 28 (4): 566-579. 10.1177/0885328212465662.

Brown MA, Daya MR, Worley JA: Experience with chitosan dressings in a civilian EMS system. J Emerg Med. 2009, 37 (1): 1-7. 10.1016/j.jemermed.2007.05.043.

Agnihotri SA, Mallikarjuna NN, Aminabhavi TM: Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Controll Release. 2004, 100 (1): 5-28. 10.1016/j.jconrel.2004.08.010.

Nguyen DT, McCanless JD, Mecwan MM, Noblett AP, Haggard WO, Smith RA, Bumgardner JD: Balancing mechanical strength with bioactivity in chitosan-calcium phosphate 3D microsphere scaffolds for bone tissue engineering: air- vs. freeze-drying processes. J Biomater Sci Polym Ed. 2013, 24 (9): 1071-1083. 10.1080/09205063.2012.735099.

Perez RA, Kim M, Kim TH, Kim JH, Lee JH, Park JH, Knowles JC, Kim HW: Utilizing core-shell fibrous collagen-alginate hydrogel cell delivery system for bone tissue engineering. Tissue Eng Part A. 2014, 20 (1–2): 103-114.

Amruthwar SS, Janorkar AV: In vitro evaluation of elastin-like polypeptide-collagen composite scaffold for bone tissue engineering. Dent Mater. 2013, 29 (2): 211-220. 10.1016/j.dental.2012.10.003.

Nishiyama Y, Langan P, Chanzy H: Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc. 2002, 124 (31): 9074-9082. 10.1021/ja0257319.

Aravamudhan A, Ramos DM, Nip J, Harmon MD, James R, Deng M, Laurencin CT, Yu X, Kumbar SG: Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering. J Biomed Nanotechnol. 2013, 9 (4): 719-731. 10.1166/jbn.2013.1574.

Gupta A, Woods MD, Illingworth KD, Niemeier R, Schafer I, Cady C, Filip P, El-Amin SF: Single walled carbon nanotube composites for bone tissue engineering. J Orthop Res. 2013, 31 (9): 1374-1381. 10.1002/jor.22379.

Mistura DV, Messias AD, Duek EA, Duarte MA: Development, characterization, and cellular adhesion of poly(l-lactic acid)/poly(caprolactone triol) membranes for potential application in bone tissue regeneration. Artif Organs. 2013, 37 (11): 978-984. 10.1111/aor.12232.

Tang Y, Zhao Y, Wang X, Lin T: Layer-by-layer assembly of silica nanoparticles on 3D fibrous scaffolds: enhancement of osteoblast cell adhesion, proliferation and differentiation. J Biomed Mater Res A. 2013, doi:10.1002/jbm.a.35050

Yang YL, Chang CH, Huang CC, Kao WM, Liu WC, Liu HW: Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering. Biomed Mater Eng. 2014, 24 (1): 979-985.

Lomas AJ, Webb WR, Han J, Chen GQ, Sun X, Zhang Z, El Haj AJ, Forsyth NR: Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/collagen hybrid scaffolds for tissue engineering applications. Tissue Eng Part C Methods. 2013, 19 (8): 577-585. 10.1089/ten.tec.2012.0457.

Baylan N, Bhat S, Ditto M, Lawrence JG, Lecka-Czernik B, Yildirim-Ayan E: Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Biomed Mater. 2013, 8 (4): 045011-10.1088/1748-6041/8/4/045011. doi:10.1088/1748-6041/8/4/045011

Chae T, Yang H, Ko F, Troczynski T: Bio-inspired dicalcium phosphate anhydrate/poly(lactic acid) nanocomposite fibrous scaffolds for hard tissue regeneration: in situ synthesis and electrospinning. J Biomed Mater Res A. 2013, doi:10.1002/jbm.a.34715

Wang M, Cheng X, Zhu W, Holmes B, Keidar M, Zhang LG: Design of biomimetic and bioactive cold plasma modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow derived mesenchymal stem cells. Tissue Eng Part A. 2014, 20 (5–6): 1060-1071.

Perez RA, Ginebra MP: Injectable collagen/α-tricalcium phosphate cement: collagen-mineral phase interactions and cell response. J Mater Sci Mater Med. 2013, 24 (2): 381-393. 10.1007/s10856-012-4799-8.

Akkouch A, Zhang Z, Rouabhia M: Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly(-lactide-co-ϵ-caprolactone) scaffold. J Biomater Appl. 2014, 28 (6): 922-936. 10.1177/0885328213486705.

Ning L, Malmstrom H, Ren YF: Porous collagen-hydroxyapatite scaffolds with mesenchymal stem cells for bone regeneration. J Oral Implantol. 2013, doi:10.1563/AAID-JOI-D-12-00298

Pasqui D, Torricelli P, De Cagna M, Fini M, Barbucci R: Carboxymethyl cellulose-hydroxyapatite hybrid hydrogel as a composite material for bone tissue engineering applications. J Biomed Mater Res A. 2013, doi:10.1002/jbm.a.34810

Patlolla A, Arinzeh TL: Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering. Biotechnol Bioeng. 2013, doi:10.1002/bit.25146

Velasquez P, Luklinska ZB, Meseguer-Olmo L, de Val Mate-Sanchez JE, Delgado-Ruiz RA, Calvo-Guirado JL, Ramirez-Fernandez MP, de Aza PN: αTCP ceramic doped with dicalcium silicate for bone regeneration applications prepared by powder metallurgy method: in vitro and in vivo studies. J Biomed Mater Res A. 2013, 101 (7): 1943-1954.

Vozzi G, Corallo C, Carta S, Fortina M, Gattazzo F, Galletti M, Giordano N: Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences. J Biomed Mater Res A. 2013, doi:10.1002/jbm.a.34823

Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S: Selective laser sintering fabrication of nano-hydroxyapatite/poly-ϵ-caprolactone scaffolds for bone tissue engineering applications. Int J Nanomedicine. 2013, 8: 4197-4213.

Yang P, Huang X, Wang C, Dang X, Wang K: Repair of bone defects using a new biomimetic construction fabricated by adipose-derived stem cells, collagen I, and porous beta-tricalcium phosphate scaffolds. Exp Biol Med (Maywood). 2013, 238 (12): 1331-1343. 10.1177/1535370213505827.

Sagar N, Pandey AK, Gurbani D, Khan K, Singh D, Chaudhari BP, Soni VP, Chattopadhyay N, Dhawan A, Bellare JR: In-vivo efficacy of compliant 3D nano-composite in critical-size bone defect repair: a six month preclinical study in rabbit. PLoS One. 2013, 8 (10): e77578-10.1371/journal.pone.0077578.

Calvo-Guirado JL, Ramírez-Fernández MP, Delgado-Ruíz RA, Maté-Sánchez JE, Velasquez P, de Aza PN: Influence of biphasic β-TCP with and without the use of collagen membranes on bone healing of surgically critical size defects. A radiological, histological, and histomorphometric study. Clin Oral Implants Res. 2013, doi:10.1111/clr.12258

Jung UW, Lee JS, Lee G, Lee IK, Hwang JW, Kim MS, Choi SH, Chai JK: Role of collagen membrane in lateral onlay grafting with bovine hydroxyapatite incorporated with collagen matrix in dogs. J Periodontal Implant Sci. 2013, 43 (2): 64-71. 10.5051/jpis.2013.43.2.64.

Piccinini M, Rebaudi A, Sglavo VM, Bucciotti F, Pierfrancesco R: A new HA/TTCP material for bone augmentation: an in vivo histological pilot study in primates sinus grafting. Implant Dent. 2013, 22 (1): 83-90. 10.1097/ID.0b013e31827afc19.

Farahpour MR, Sharifi D, AA B, Veshkini A, Soheil A: Radiological evaluation of the effect of biphasic calcium phosphate scaffold (HA + TCP) with 5, 10 and 20 percentage of porosity on healing of segmental bone defect in rabbit radius. Bratisl Lek Listy. 2012, 113 (9): 529-533.

Eleftheriadis E, Leventis MD, Tosios KI, Faratzis G, Titsinidis S, Eleftheriadi I, Dontas I: Osteogenic activity of β-tricalcium phosphate in a hydroxyl sulphate matrix and demineralized bone matrix: a histological study in rabbit mandible. J Oral Sci. 2010, 52 (3): 377-384. 10.2334/josnusd.52.377.

Finkemeier CG: Bone-grafting and bone-graft substitutes. J Bone Joint Surg. 2002, 84: 454-464.

El-Fiqi A, Lee JH, Lee EJ, Kim HW: Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering. Acta Biomater. 2013, 9 (12): 9508-9521. 10.1016/j.actbio.2013.07.036.

Silva AR, Paula AC, Martins TM, Goes AM, Pereria MM: Synergistic effect between bioactive glass foam and a perfusion bioreactor on osteogenic differentiation of human adipose stem cells. J Biomed Mater Res A. 2013, doi:10.1002/jbm.a.34758

Gu Y, Huang W, Rahaman MN, Day DE: Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses. Acta Biomater. 2013, 9 (11): 9126-9136. 10.1016/j.actbio.2013.06.039.

Fredericks DC, Petersen EB, Sahai N, Corley KG, DeVries N, Grosland NM, Smucker JD: Evaluation of a novel silicate substituted hydroxyapatite bone graft substitute in a rabbit posterolateral fusion model. Iowa Orthop J. 2013, 33: 25-32.

Springer IN, Açil Y, Kuchenbecker S, Bolte H, Warnke PH, Abboud M, Wiltfang J, Terheyden H: Bone graft versus BMP-7 in a critical size defect–cranioplasty in a growing infant model. Bone. 2005, 37: 563-569. 10.1016/j.bone.2005.05.010.

Cha JK, Lee JS, Kim MS, Choi SH, Cho KS, Jung UW: Sinus augmentation using BMP-2 in a bovine hydroxyapatite/collagen carrier in dogs. J Clin Periodontol. 2013, doi:10.1111/jcpe.12174

Jang JW, Yun JH, Lee KI, Jang JW, Jung UW, Kim CS, Choi SH, Cho KS: Osteoinductive activity of biphasic calcium phosphate with different rhBMP-2 doses in rats. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012, 113 (4): 480-487. 10.1016/j.tripleo.2011.04.013.

Stancoven BW, Lee J, Dixon DR, McPherson JC, Bisch FC, Wikesjö UM, Susin C: Effect of bone morphogenetic protein-2, demineralized bone matrix and systemic parathyroid hormone (1–34) on local bone formation in a rat calvaria critical-size defect model. J Periodontal Res. 2013, 48 (2): 243-251. 10.1111/jre.12001.

Liu Y, Ming L, Luo H, Liu W, Zhang Y, Liu H, Jin Y: Integration of a calcined bovine bone and BMSC-sheet 3D scaffold and the promotion of bone regeneration in large defects. Biomaterials. 2013, 34 (38): 9998-10006. 10.1016/j.biomaterials.2013.09.040.

Hsu WK, Polavarapu M, Riaz R, Roc GC, Stock SR, Glicksman ZS, Ghodasra JH, Hsu EL: Nanocomposite therapy as a more efficacious and less inflammatory alternative to bone morphogenetic protein-2 in a rodent arthrodesis model. J Orthop Res. 2011, 29 (12): 1812-1819. 10.1002/jor.21454.

Lammens J, Nijs J, Schepers E, Ectors N, Lismont D, Verduyckt B: The effect of bone morphogenetic protein-7 (OP-1) and demineralized bone matrix (DBM) in the rabbit tibial distraction model. Acta Orthop Belg. 2009, 75 (1): 103-109.

Lyles KW, Colon-Emeric CS, Magaziner JS, Adachi JD, Pieper CF, Mautalen C, Hyldstrup L, Recknor C, Nordsletten L, Moore KA, Lavecchia C, Zhang J, Mesenbrink P, Hodgson PK, Abrams K, Orloff JJ, Horowitz Z, Eriksen EF, Boonen S: Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med. 2007, 357 (18): 1799-1809. 10.1056/NEJMoa074941.

Yaman F, Ağaçayak S, Atilgan S, Benlidayi E, Ucan MC, Erol B, Kaya B, Gunay A, Guven S: Effects of systemic zoledronic acid administration on osseointegration of hydroxyapatite-coated and resorbable blast material surface implants in rabbit models. Int J Oral Maxillofac Implants. 2012, 27 (6): 1443-1447.

Mathavan N, Bosemark P, Isaksson H, Tägil M: Investigating the synergistic efficacy of BMP-7 and zoledronate on bone allografts using an open rat osteotomy model. Bone. 2013, 56 (2): 440-448. 10.1016/j.bone.2013.06.030.

Servin-Trujillo MA, Reyes-Esparza JA, Garrido-Fariña G, Flores-Gazca E, Osuna-Martinez U, Rodriguez-Fragoso L: Use of a graft of demineralized bone matrix along with TGF-β1 leads to an early bone repair in dogs. J Vet Med Sci. 2011, 73 (9): 1151-1161. 10.1292/jvms.10-0155.

Ozturk BY, Inci I, Egri S, Ozturk AM, Yetkin H, Goktas G, Elmas C, Piskin E, Erdogan D: The treatment of segmental bone defects in rabbit tibiae with vascular endothelial growth factor (VEGF)-loaded gelatin/hydroxyapatite “cryogel” scaffold. Eur J Orthop Surg Traumatol. 2013, 23 (7): 767-774. 10.1007/s00590-012-1070-4.

Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE: Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet. 1996, 348 (9041): 1535-1541. 10.1016/S0140-6736(96)07088-2.

Mathijssen NM, Hannink G, Pilot P, Schreurs BW, Bloem RM, Buma P: Impregnation of bone chips with alendronate and cefazolin, combined with demineralized bone matrix: a bone chamber study in goats. BMC Musculoskelet Disord. 2012, 13: 44-10.1186/1471-2474-13-44.

Jiang L, Sun H, Yuan A, Zhang K, Li D, Li C, Shi C, Li X, Gao K, Zheng C, Yang B, Sun H: Enhancement of osteoinduction by continual simvastatin release from poly(lactic-co-glycolic acid)-hydroxyapatite-simvastatin nano-fibrous scaffold. J Biomed Nanotechnol. 2013, 9 (11): 1921-1928. 10.1166/jbn.2013.1692.

Oryan A, Moshiri A, Raayat AR: Novel application of Theranekron® enhanced the structural and functional performance of the tenotomized tendon in rabbits. Cells Tissues Organs. 2012, 196: 442-455. 10.1159/000337860.

Moshiri A, Oryan A: Role of platelet rich plasma in soft and hard connective tissue healing: an evidence based review from basic to clinical application. Hard Tissue. 2013, 2: 6-

Shafiei-Sarvestani Z, Oryan A, Bigham AS, Meimandi-Parizi A: The effect of hydroxyapatite-hPRP, and coral-hPRP on bone healing in rabbits: radiological, biomechanical, macroscopic and histopathologic evaluation. Int J Surg. 2012, 10: 96-101. 10.1016/j.ijsu.2011.12.010.

El Backly RM, Zaky SH, Canciani B, Saad MM, Eweida AM, Brun F, Tromba G, Komlev VS, Mastrogiacomo M, Marei MK, Cancedda R: Platelet rich plasma enhances osteoconductive properties of a hydroxyapatite-β-tricalcium phosphate scaffold (Skelite™) for late healing of critical size rabbit calvarial defects. J Craniomaxillofac Surg. J Craniomaxillofac Surg 2013, doi:10.1016/j.jcms.2013.06.012

Leventis MD, Eleftheriadis E, Oikonomopoulou P, Vavouraki H, Khaldi L, Tosios KI, Vardas E, Valavanis KD, Dontas I: Experimental study of the effect of autologous platelet-rich plasma on the early phases of osteoinduction by allogenic demineralized bone matrix. Implant Dent. 2012, 21 (5): 399-405. 10.1097/ID.0b013e3182611f48.

Faratzis G, Leventis M, Chrysomali E, Khaldi L, Eleftheriadis A, Eleftheriadis I, Dontas I: Effect of autologous platelet-rich plasma in combination with a biphasic synthetic graft material on bone healing in critical-size cranial defects. J Craniofac Surg. 2012, 23 (5): 1318-1323. 10.1097/SCS.0b013e31825c76e5.

Tavakol S, Khoshzaban A, Azami M, Kashani IR, Tavakol H, Yazdanifar M, Sorkhabadi SM: The effect of carrier type on bone regeneration of demineralized bone matrix in vivo. J Craniofac Surg. 2013, 24 (6): 2135-2140. 10.1097/SCS.0b013e3182a243d4.

Thitiset T, Damrongsakkul S, Bunaprasert T, Leeanansaksiri W, Honsawek S: Development of collagen/demineralized bone powder scaffolds and periosteum-derived cells for bone tissue engineering application. Int J Mol Sci. 2013, 14 (1): 2056-2071. 10.3390/ijms14012056.

Liu J, Mao K, Liu Z, Wang X, Cui F, Guo W, Mao K, Yang S: Injectable biocomposites for bone healing in rabbit femoral condyle defects. PLoS One. 2013, 8 (10): e75668-10.1371/journal.pone.0075668.

Yang C, Unursaikhan O, Lee JS, Jung UW, Kim CS, Choi SH: Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits. J Biomed Mater Res B Appl Biomater. 2013, doi:10.1002/jbm.b.32984

Pourebrahim N, Hashemibeni B, Shahnaseri S, Torabinia N, Mousavi B, Adibi S, Heidari F, Alavi MJ: A comparison of tissue-engineered bone from adipose-derived stem cell with autogenous bone repair in maxillary alveolar cleft model in dogs. Int J Oral Maxillofac Surg. 2013, 42 (5): 562-568. 10.1016/j.ijom.2012.10.012.

Pang L, Hao W, Jiang M, Huang J, Yan Y, Hu Y: Bony defect repair in rabbit using hybrid rapid prototyping polylactic-co-glycolic acid/β-tricalciumphosphate collagen I/apatite scaffold and bone marrow mesenchymal stem cells. Indian J Orthop. 2013, 47 (4): 388-394. 10.4103/0019-5413.114927.

Xuan Y, Tang H, Wu B, Ding X, Lu Z, Li W, Xu Z: A specific groove design for individualized healing in a canine partial sternal defect model by a polycaprolactone/hydroxyapatite scaffold coated with bone marrow stromal cells. J Biomed Mater Res A. 2013, doi:10.1002/jbm.a.35012

Biazar E, Heidari Keshel S, Rezaei Tavirani M, Jahandideh R: Bone formation in calvarial defects by injectable nanoparticular scaffold loaded with stem cells. Expert Opin Biol Ther. 2013, 13 (12): 1653-1662. 10.1517/14712598.2013.840284.

Udehiya RK, Amarpal , Aithal HP, Kinjavdekar P, Pawde AM, Singh R, Taru Sharma G: Comparison of autogenic and allogenic bone marrow derived mesenchymal stem cells for repair of segmental bone defects in rabbits. Res Vet Sci. 2013, 94 (3): 743-752. 10.1016/j.rvsc.2013.01.011.

Castilho M, Dias M, Gbureck U, Groll J, Fernandes P, Pires I, Gouveia B, Rodrigues J, Vorndran E: Fabrication of computationally designed scaffolds by low temperature 3D printing. Biofabrication. 2013, 5 (3): 035012-10.1088/1758-5082/5/3/035012.

Domingos M, Intranuovo F, Russo T, Santis RD, Gloria A, Ambrosio L, Ciurana J, Bartolo P: The first systematic analysis of 3D rapid prototyped poly(ϵ-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability. Biofabrication. 2013, 5 (4): 045004-10.1088/1758-5082/5/4/045004.

Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P: The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials. 2014, 35 (1): 49-62. 10.1016/j.biomaterials.2013.09.078.

Lee JY, Choi B, Wu B, Lee M: Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication. 2013, 5 (4): 045003-10.1088/1758-5082/5/4/045003.

Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC: 3D printed bionic ears. Nano Lett. 2013, 13 (6): 2634-2639. 10.1021/nl4007744.

Schwabe P, Greiner S, Ganzert R, Eberhart J, Dahn K, Stemberger A, Plank C, Schmidmaier G, Wildemann B: Effect of a novel nonviral gene delivery of BMP-2 on bone healing. Sci World J. 2012, 560142-doi:10.1100/2012/560142

Heyde M, Partridge KA, Oreffo RO, Howdle SM, Shakesheff KM, Garnett MC: Gene therapy used for tissue engineering applications. J Pharm Pharmacol. 2007, 59: 329-350. 10.1211/jpp.59.3.0002.

Moshiri A, Oryan A: Structural and functional modulation of early healing of full-thickness superficial digital flexor tendon rupture in rabbits by repeated subcutaneous administration of exogenous human recombinant basic fibroblast growth factor. J Foot Ankle Surg. 2011, 50: 654-662. 10.1053/j.jfas.2011.05.002.

Oryan A, Moshiri A: A long term study on the role of exogenous human recombinant basic fibroblast growth factor on the superficial digital flexor tendon healing in rabbits. J Musculoskelet Neuronal Interact. 2011, 11: 185-195.

Oryan A, Moshiri A, Meimandi-Parizi AH: Alcoholic extract of Tarantula cubensis improves sharp ruptured tendon healing after primary repair in rabbits. Am J Orthop. 2012, 41: 554-560.

Oryan A, Moshiri A, Meimandiparizi AH: Effects of sodium-hyaluronate and glucosamine-chondroitin sulfate on remodeling stage of tenotomized superficial digital flexor tendon in rabbits: a clinical, histopathological, ultrastructural, and biomechanical study. Connect Tissue Res. 2011, 52: 329-339. 10.3109/03008207.2010.531332.