Bone buffering of acid and base in humans

American Journal of Physiology - Renal Physiology - Tập 285 Số 5 - Trang F811-F832 - 2003
Jacob Lemann1, David A. Bushinsky, L. Lee Hamm
1Nephrology Section, Tulane University School of Medicine, 2601 St. Charles Ave., New Orleans, LA 70130-5927, USA. [email protected]

Tóm tắt

The sources and rates of metabolic acid production in relation to renal net acid excretion and thus acid balance in humans have remained controversial. The techniques and possible errors in these measurements are reviewed, as is the relationship of charge balance to acid balance. The results demonstrate that when acid production is experimentally increased among healthy subjects, renal net acid excretion does not increase as much as acid production so that acid balances become positive. These positive imbalances are accompanied by equivalently negative charge balances that are the result of bone buffering of retained H+and loss of bone Ca2+into the urine. The data also demonstrate that when acid production is experimentally reduced during the administration of KHCO3, renal net acid excretion does not decrease as much as the decrease in acid production so that acid balances become negative, or, in opposite terms, there are equivalently positive [Formula: see text] balances. Equivalently positive K+and Ca2+balances, and thus positive charge balances, accompany these negative acid imbalances. Similarly, positive Na+balances, and thus positive charge balances, accompany these negative acid balances during the administration of NaHCO3. These charge balances are likely the result of the adsorption of [Formula: see text] onto the crystal surfaces of bone mineral. There do not appear to be significant errors in the measurements.

Từ khóa


Tài liệu tham khảo

10.1007/BF02441191

10.1152/ajprenal.1988.255.4.F807

10.1038/ki.1973.87

10.3109/00365516009062416

10.1210/jcem-55-2-369

10.1152/ajprenal.1989.257.2.F170

Burckhardt G, Di Sole F, and Helmle-Kolb C.The Na+/H+exchanger gene family.J Nephrol15,Suppl5: S3-S21, 2002.

10.1152/ajprenal.1989.256.5.F836

10.1152/ajprenal.1988.254.3.F306

10.1097/00041552-200007000-00008

10.1359/jbmr.1997.12.10.1664

Bushinsky DAand Lechleider RJ.Mechanism of proton-induced bone calcium release: calcium carbonate dissolution.Am J Physiol Renal Fluid Electrolyte Physiol252: F998-F1005, 1987.

10.1152/ajprenal.1992.263.3.F510

Caviston TL, Campbell WG, Wingo CS, and Cain BD.Molecular identification of the renal H+, K+-ATPases.Semin Nephrol19: 431-437, 1999.

10.1152/ajprenal.1991.261.1.F76

Chan JCM.Acid-base, calcium, potassium and aldosterone metabolism in renal tubular acidosis.Nephron21: 152-158, 1979.

10.1152/ajprenal.00006.2001

10.1038/ki.1997.334

Conway EJ.Microdifusion Analysis and Volumetric Error(rev. ed.). London: Lockwood, 1947.

10.1210/jcem-43-5-1056

Folin O.The acidity of urine.Am J Physiol9: 265-278, 1903.

Fraser RM, Harrison M, and Ibbertson K.The rate of calcium turnover in bone. Measurement by a tracer test using stable strontium.Quart J Med28: 85-111, 1960.

10.1093/ajcn/68.3.576

10.1359/jbmr.2003.18.7.1317

Gauthier P, Simon EE, and Lemann J JrAcidosis of chronic renal failure. In:Acid-Base and Electrolyte Disorders, edited by DuBose TD Jr. and Hamm LL. Philadelphia, PA: Saunders, 2002, p.207-216.

10.1172/JCI105163

Hamm LLand Hering-Smith KS.Acid-base transport in the collecting duct.Semin Nephrol13: 246-255, 1993.

Hunt JN.The influence of dietary sulfur on the urinary output of acid in man.Clin Sci (Colch)15: 119-134, 1956.

Kaye M.Hypocalcemia after an acute phosphate load is secondary to reduced calcium efflux from bone: studies in patients with minimal renal function and varying parathyroid activity.J Am Soc Nephrol6: 273-280, 1995.

10.1111/j.1651-2227.1969.tb04728.x

10.1159/000046294

10.1046/j.1523-1755.2000.00282.x

10.1038/ki.1986.60

10.1038/ki.1989.40

Lemann JJr and Lennon EJ.A potential error in the measurement of urinary titratable acid.J Lab Clin Med67: 906-913, 1966.

10.1172/JCI105164

10.1172/JCI105467

Lemann JJr, Litzow JR, and Lennon EJ.Studies of the mechanism by which chronic metabolic acidosis augments urinary calcium excretion in man.J Clin Invest47: 1318-1328, 1967.

Lemann JJr, Pleuss JA, Gray RW, and Hoffman RG.Potassium administration reduces and potassium deprivation increases urinary calcium excretion in healthy adults.Kidney Int39: 971-983, 1991 [Corrigenda.Kidney Int40: August 1991, p. 388].

10.1038/ki.1995.134

10.1172/JCI104001

Lennon EJand Lemann J Jr.The effect of a potassium-deficient diet on the pattern of recovery from experimental metabolic acidosis.Clin Sci (Colch)34: 365-378, 1968.

10.1172/JCI105466

10.1172/JCI107690

10.1172/JCI104519

Lichtwitz A, de Séze S, Parlier R, Hioco D, and Bordier P.L'hypocalciurie glomerulaire.Bull Soc Méd Hôp Paris76: 98-119, 1960.

10.1172/JCI105530

10.1097/00005792-194305000-00002

10.1111/j.1749-6632.1960.tb23237.x

10.1093/ajcn/39.2.281

10.1038/ki.1983.193

10.1038/ki.1984.212

10.1159/000166496

Mitch WE.Insights into abnormalities of chronic renal disease attributed to malnutrition.J Am Soc Nephrol13,Suppl1: S22-S27, 2002.

Morris, CMJr, Frasetto LA, Schmidlin O, Forman A, and Sebastian A.Expression of osteoporosis as determined by diet-disordered electrolyte and acid base metabolism. In:Nutritional Aspects of Osteoporosis, edited by Burckhardt P, Dawson-Hughes B, and Heany RB. San Diego, CA: Academic, 2001, chapt. 31, p. 357-377.

Muldowney FP, Freaney R, and Moloney MF.Importance of dietary sodium in the hypercalciuria syndrome.Kidney Int22: 292-296, 1972.

Nakhoul Nand Hamm LL.Vacuolar H+-ATPase in the kidney.J Nephrol15,Suppl5: S22-S31, 2002.

10.1038/ki.1989.280

Oh MS.Irrelevance of bone buffering to acid-base homeostasis in chronic metabolic acidosis.Nephron39: 7-10, 1991.

Oh MSand Carroll HJ.External balances of electrolytes and acids and bases. In:The Kidney(3rd ed.), edited by Seldin DR and Geibisch G. Philadelphia, PA: Lippincott Williams & Wilkins, 2000, p. 33-59.

Packer RK, Curry CA, and Brown KM.Urinary organic anion excretion in response to dietary acid and base loading.J Am Soc Nephrol5: 1625-1629, 1995.

10.1097/00005792-196509000-00002

Peters JPand Van Slyke DD.Quantitative Clinical Chemistry. Methods.Baltimore, MD: Williams & Wilkins, 1932, vol.II, p. 896.

10.1172/JCI105117

10.1172/JCI104384

10.1093/jn/110.2.305

10.1172/JCI103794

Sebastian A, Frasetto LA, Meriam RL, Sellmeye DE, and Morris RC Jr.An evolutional persepctive on the acid-base effects of the diet. In:Acid-Base(2nd ed.), edited by Gennari FJ, Androgue H, Galla JH, and Madias N. New York: Dekker, 2003.

10.1056/NEJM199406233302502

Sellards AM.The relationship of the renal lesions of Asiatic cholera to the ordinary nephritides with especial reference to acidosis.Am J Tropical Dis2: 104-117, 1914.

Sherman HCand Gettler AO.The balance of acid-forming, and base-forming elements in food and its relation to ammonia metabolism.J Biol Chem11: 323-338, 1912.

Slatopolsky E, Gray RW, Adams ND, Lewis J, Hruska K, Martin K, Klahr S, DeLuca H, and Lemann J Jr.Low serum levels of 1,25-(OH)2-D are not responsible for secondary hyperparathyroidism in early renal failure (Abstract).Kidney Int14: 733, 1972.

Van Slyke DDand Palmer WW.Studies of acidosis. XVI. The titration of organic acids in urine.J Biol Chem41: 567-585, 1920.

10.1210/jcem-43-5-1047