Body mass index at age 18 years and recent body mass index in relation to risk of breast cancer overall and ER/PR/HER2-defined subtypes in white women and African-American women: a pooled analysis

Breast Cancer Research - Tập 20 - Trang 1-14 - 2018
Huiyan Ma1, Giske Ursin2,3, Xinxin Xu1, Eunjung Lee4, Kayo Togawa1,5, Kathleen E. Malone6, Polly A. Marchbanks7, Jill A. McDonald8, Michael S. Simon9, Suzanne G. Folger7, Yani Lu1, Jane Sullivan-Halley1, Dennis M. Deapen4, Michael F. Press10, Leslie Bernstein1
1Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, USA
2Cancer Registry of Norway, Oslo, Norway
3Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
4Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
5Section of Environment and Radiation, International Agency for Research on Cancer, Lyon, France
6Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, USA
7Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, USA
8College of Health and Social Services, New Mexico State University, Las Cruces, USA
9Karmanos Cancer Institute, Department of Oncology, Wayne State University, Detroit, USA
10Pathology, Keck School of Medicine, University of Southern California, Los Angeles, USA

Tóm tắt

Although it has been well-documented that obesity is associated with decreased risk of premenopausal breast cancer and increased risk of postmenopausal breast cancer, it is unclear whether these associations differ among breast cancer subtypes defined by the tumor protein expression status of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). We evaluated the associations of body mass index (BMI) at age 18 years and recent BMI in relation to risk of breast cancer overall and ER/PR/HER2-defined subtypes, in 6320 women (3934 case-patient participants, 2386 control participants) aged 35–64 years, who participated in one of three population-based case-control studies. We estimated multivariable-adjusted odd ratios (ORs) and corresponding 95% confidence intervals (CIs) using polychotomous unconditional logistic regression methods for case-control comparisons in premenopausal women and postmenopausal women. BMI at age 18 years was inversely associated with risk of breast cancer, particularly among premenopausal women (≥ 25 vs. < 20 kg/m2, OR = 0.72, 95% CI = 0.53–0.96; per 5 kg/m2 increase, OR = 0.83, 95% CI = 0.73–0.95). This inverse association did not differ across ER/PR/HER2-defined subtypes or by race (white women, African-American women). Recent BMI was not associated with risk of premenopausal breast cancer after adjustment for BMI at age 18 years; nevertheless, the analysis for the joint effects of BMI at age 18 years and recent BMI showed that premenopausal women in the highest categories of the two BMI measures (≥ 25 kg/m2 at age 18 years and ≥ 30 kg/m2 for recent BMI) had 46% lower risk of breast cancer than premenopausal women in the lowest categories of the two BMI measures (< 20 kg/m2 at age 18 years and < 25 kg/m2 for recent BMI; OR = 0.54, 95% CI = 0.38–0.78). Neither measure of BMI was statistically significantly associated with risk of postmenopausal breast cancer. Our findings indicate that high BMI near the end of adolescence decreases risk of all ER/PR/HER2-defined subtypes of premenopausal breast cancer and also suggest that this benefit could be maximized among premenopausal women who consistently have high BMI during their premenopausal years.

Tài liệu tham khảo

Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet. 2011;378(9793):815–25. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78. Munsell MF, Sprague BL, Berry DA, Chisholm G, Trentham-Dietz A. Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiol Rev. 2014;36:114–36. Pierobon M, Frankenfeld CL. Obesity as a risk factor for triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res Treat. 2013;137(1):307–14. Bandera EV, Chandran U, Hong CC, Troester MA, Bethea TN, Adams-Campbell LL, Haiman CA, Park SY, Olshan AF, Ambrosone CB, et al. Obesity, body fat distribution, and risk of breast cancer subtypes in African American women participating in the AMBER Consortium. Breast Cancer Res Treat. 2015;150(3):655–66. Ma H, Wang Y, Sullivan-Halley J, Weiss L, Marchbanks PA, Spirtas R, Ursin G, Burkman RT, Simon MS, Malone KE, et al. Use of four biomarkers to evaluate the risk of breast cancer subtypes in the women's contraceptive and reproductive experiences study. Cancer Res. 2010;70(2):575–87. Patel AV, Press MF, Meeske K, Calle EE, Bernstein L. Lifetime recreational exercise activity and risk of breast carcinoma in situ. Cancer. 2003;98(10):2161–9. Ma H, Bernstein L, Ross RK, Ursin G. Hormone-related risk factors for breast cancer in women under age 50 years by estrogen and progesterone receptor status: results from a case-control and a case-case comparison. Breast Cancer Res. 2006;8(4):R39. Marchbanks PA, McDonald JA, Wilson HG, Burnett NM, Daling JR, Bernstein L, Malone KE, Strom BL, Norman SA, Weiss LK, et al. The NICHD Women's Contraceptive and Reproductive Experiences Study: methods and operational results. Ann Epidemiol. 2002;12(4):213–21. Hanby AM, Hughes TA. In situ and invasive lobular neoplasia of the breast. Histopathology. 2008;52(1):58–66. Lee E, McKean-Cowdin R, Ma H, Chen Z, Van Den Berg D, Henderson BE, Bernstein L, Ursin G. Evaluation of unclassified variants in the breast cancer susceptibility genes BRCA1 and BRCA2 using five methods: results from a population-based study of young breast cancer patients. Breast Cancer Res. 2008;10(1):R19. WHO. Obesity: preventing and managing the global epidemic. Report of a WHO Expert Committee. Geneva: World Health Organization; 2000. Berstad P, Coates RJ, Bernstein L, Folger SG, Malone KE, Marchbanks PA, Weiss LK, Liff JM, McDonald JA, Strom BL, et al. A case-control study of body mass index and breast cancer risk in white and African-American women. Cancer Epidemiol Biomarkers Prev. 2010;19(6):1532–44. Berstad P, Ma H, Bernstein L, Ursin G. Alcohol intake and breast cancer risk among young women. Breast Cancer Res Treat. 2008;108(1):113–20. Press M, Spaulding B, Groshen S, Kaminsky D, Hagerty M, Sherman L, Christensen K, Edwards DP. Comparison of different antibodies for detection of progesterone receptor in breast cancer. Steroids. 2002;67(9):799–813. Finn RS, Press MF, Dering J, Arbushites M, Koehler M, Oliva C, Williams LS, Di Leo A. Estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 (HER2), and epidermal growth factor receptor expression and benefit from lapatinib in a randomized trial of paclitaxel with lapatinib or placebo as first-line treatment in HER2-negative or unknown metastatic breast cancer. J Clin Oncol. 2009;27(24):3908–15. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS, Hayes M, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med. 2010;134(7):e48–72. Press MF, Sauter G, Bernstein L, Villalobos IE, Mirlacher M, Zhou J-Y, Wardeh R, Li Y-T, Guzman R, Ma Y, et al. Diagnostic evaluation of HER-2 as a molecular target: an assessment of accuracy and reproducibility of laboratory testing in large, prospective. randomized clinical trials. Clin Cancer Res. 2005;11(18):6598–607. Press MF, Slamon DJ, Flom KJ, Park J, Zhou J-Y, Bernstein L. Evaluation of HER-2/neu gene amplification and overexpression: comparison of frequently used assay methods in a molecularly characterized cohort of breast cancer specimens. J Clin Oncol. 2002;20(14):3095–105. Lee E, McKean-Cowdin E, Ma H, Spicer D, Van Den Berg D, Bernstein L, Ursin G. Characteristics of triple-negative breast cancer in patients with a BRCA1 mutation, results from a population-based study of women under age 50 [What characterizes young women who develop triple-negative cancer?]. J Clin Oncol. 2011;29(33):4373–80. Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, Shi B. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5(10):2929–43. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, Senn HJ, Panel m. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013;24(9):2206–23. Hosmer DW, Lemeshow S. Applied logistic regression. New York: a Wiley-Interscience Publication; 2000. Morimoto LM, White E, Chen Z, Chlebowski RT, Hays J, Kuller L, Lopez AM, Manson J, Margolis KL, Muti PC, et al. Obesity, body size, and risk of postmenopausal breast cancer: the Women's Health Initiative (United States). Cancer Causes Control. 2002;13(8):741–51. Tamimi RM, Colditz GA, Hazra A, Baer HJ, Hankinson SE, Rosner B, Marotti J, Connolly JL, Schnitt SJ, Collins LC. Traditional breast cancer risk factors in relation to molecular subtypes of breast cancer. Breast Cancer Res Treat. 2012;131(1):159–67. Phipps AI, Chlebowski RT, Prentice R, McTiernan A, Stefanick ML, Wactawski-Wende J, Kuller LH, Adams-Campbell LL, Lane D, Vitolins M, et al. Body size, physical activity, and risk of triple-negative and estrogen receptor-positive breast cancer. Cancer Epidemiol Biomarkers Prev. 2011;20(3):454–63. Henderson BE, Ross RK, Pike MC, Casagrande JT. Endogenous hormones as a major factor in human cancer. Cancer Res. 1982;42(8):3232–9. Key TJ, Pike MC. The role of oestrogens and progestagens in the epidemiology and prevention of breast cancer. Eur J Cancer Clin Oncol. 1988;24:29–43. Bernstein L, Ross RK. Endogenous hormones and breast cancer risk. Epidemiol Rev. 1993;15(1):48–65. Pike MC. Reducing cancer risk in women through lifestyle-mediated changes in hormone levels. Cancer Detect Prev. 1990;14(6):595–607. Westhoff C, Gentile G, Lee J, Zacur H, Helbig D. Predictors of ovarian steroid secretion in reproductive-age women. Am J Epidemiol. 1996;144(4):381–8. Deslypere JP, Verdonck L, Vermeulen A. Fat tissue: a steroid reservoir and site of steroid metabolism. J Clin Endocrinol Metab. 1985;61(3):564–70. Szymczak J, Milewicz A, Thijssen JH, Blankenstein MA, Daroszewski J. Concentration of sex steroids in adipose tissue after menopause. Steroids. 1998;63(5-6):319–21. Pike MC, Wu AH, Spicer DV, Lee S, Pearce CL. Estrogens, progestins, and risk of breast cancer. Ernst Schering Found Symp Proc. 2007;1:127–50. MacInnis RJ, English DR, Gertig DM, Hopper JL, Giles GG. Body size and composition and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev. 2004;13(12):2117–25. Hankinson SE, Willett WC, Manson JE, Colditz GA, Hunter DJ, Spiegelman D, Barbieri RL, Speizer FE. Plasma sex steroid hormone levels and risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 1998;90(17):1292–9. Ma H, Wang Y, Sullivan-Halley J, Weiss L, Burkman RT, Simon MS, Malone KE, Strom BL, Ursin G, Marchbanks PA, et al. Breast cancer receptor status: do results from a centralized pathology laboratory agree with SEER registry reports? Cancer Epidemiol Biomarkers Prev. 2009;18(8):2214–20. Kerlikowske K, Barclay J, Grady D, Sickles EA, Ernster V. Comparison of risk factors for ductal carcinoma in situ and invasive breast cancer. J Natl Cancer Inst. 1997;89(1):76–82. Reinier KS, Vacek PM, Geller BM. Risk factors for breast carcinoma in situ versus invasive breast cancer in a prospective study of pre- and post-menopausal women. Breast Cancer Res Treat. 2007;103(3):343–8.