Bochner–Riesz Means of Morrey Functions

Springer Science and Business Media LLC - Tập 26 - Trang 1-14 - 2020
David R. Adams1, Jie Xiao2
1Department of Mathematics, University of Kentucky, Lexington, USA
2Department of Mathematics and Statistics, Memorial University, St. John’s, Canada

Tóm tắt

This paper concerns both norm estimation and pointwise approximation for the Bochner–Riesz means of an arbitrary Morrey function on $${{{{\mathbb {R}}}}^n}$$—Theorems 1.1 and 1.2 for $$L^{p,\lambda }({{{{\mathbb {R}}}}^n})$$—thereby generalizing the corresponding results for $$L^p({{{{\mathbb {R}}}}^n})$$ in Stein (Acta Math 100:93–147, 1958) and Carbery et al. (J Lond Math Soc 38:513–524, 1988). As a side note, this paper also establishes Lemma 4.1 of Tomas–Stein type—if $$f\in L^{p,\lambda }({{{{\mathbb {R}}}}^n})$$ under $$ 2^{-1}(n+1)<\lambda \le n$$ is compactly supported, then $$\begin{aligned} \Vert {\hat{f}}\Vert _{L^2({\mathbb {S}}^{n-1})}\lesssim \Vert f\Vert _{L^{p,\lambda }({{{{\mathbb {R}}}}^n})}\ \ \hbox {for}\ \ \frac{4\lambda }{n+1+2\lambda }\le p<\frac{2\lambda }{n+1}. \end{aligned}$$

Tài liệu tham khảo

Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42, 765–778 (1975) Adams, D.R., Xiao, J.: Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ. Math. J. 53, 1629–1663 (2004) Adams, D.R., Xiao, J.: Morrey spaces in harmonic analysis. Ark. Mat. 50, 201–230 (2012) Adams, D.R., Xiao, J.: Restrictions of Riesz-Morrey potentials. Ark. Mat. 54, 201–231 (2016) Benea, C., Bernicot, F., Luque, T.: Sparse bilinear forms for Bochner Riesz multipliers and applications. Trans. London Math. Soc. 4, 110–128 (2017) Benedetto, J.J., Lakey, J.D.: The definition of the Fourier transformation for weigthed inequalities. J. Funct. Anal. 120, 403–439 (1974) Buckley, S.M.: Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans. Amer. Math. Soc. 340, 253–272 (1993) Carbery, A., Rubio de Francia, J.L., Vega, L.: Almost everywhere summability of Fourier integrals. J. London Math. Soc. 38, 513–524 (1988) Carleson, L., Sjölin, P.: Osillatory integrals and a multiplier problem for the disc. Studia Math. 44, 287–299 (1972) Christ, M.: On almost everywhere convergence of Bochner-Riesz means in higher dimensions. Proc. Amer. Math. Soc. 95, 16–20 (1985) Fefferman, C.: Inequalities for strongly singular convolution operators. Acta Math. 124, 9–36 (1970) Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education Inc, (2004) Herz, C.S.: On the mean inversion of Fourier and Hankel transforms. Proc. Nat. Acad. Sci. USA 40, 996–999 (1954) Hörmander, L.: Oscillartory integrals and multipliers on \(FL^p\). Ark. Mat. 11, 1–11 (1973) Lu, S.: Conjectures and problems on Bochner-Riesz means. Front. Math. China 8(6), 1237–1251 (2013) Lu, S., Yan, D.: Bochner-Riesz Means on Euclidean Spaces. World Scientific, (2013) Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165, 207–226 (1972) Orobitg, J., Verdera, J.: Choquet integrals, Hausdorff content and the Hardy-Littlewood maximal operator. Bull. London Math. Soc. 30, 145–150 (1998) Shi, X., Sun, Q.: Weighted norm inequalities for Bochner-Riesz operators and singular integral operators. Proc. Amer. Math. Soc. 116, 665–673 (1992) Stein, E.M.: Localization and summability of multiple Fourier series. Acta Math 100, 93–147 (1958) Tanaka, H.: Two-weight norm inequalities on Morrey spaces. Ann. Acad. Sci. Fenn. Math 40, 773–791 (2015) Tao, T.: The Bochner-Riesz conjecture implies the restriction conjecture. Duke Math. J. 96, 363–375 (1990) Tomas, P.: A restriction theorem for the Fourier transform. Bull. Amer. Math. Soc. 81, 477–478 (1975) Torchinsky, A.: Real Variable Methods in Harmonic Analysis. #123 Pure and Appl. Math. Series, Acadmic Press, (1986)