Bmi1 is essential in Twist1-induced epithelial–mesenchymal transition

Nature Cell Biology - Tập 12 Số 10 - Trang 982-992 - 2010
Muh‐Hwa Yang1, Dennis Shin-Shian Hsu1, Hsei-Wei Wang1, Hsiao-Jung Wang1, Hsin-Yi Lan1, Wenhao Yang1, Chi-Hung Huang2, Shou‐Yen Kao3, Cheng‐Hwai Tzeng4, Shyh‐Kuan Tai5, Shyue‐Yih Chang6, Oscar K. Lee7, Kou-Juey Wu6
1Institute of Clinical Medicine, National Yang-Ming University, No.155, Sec.2, Li-Nong Street, Peitou, 112, Taipei, Taiwan
2Taiwan Advance Biopharm, Inc, Xizhi City, 221, Taipei County, Taiwan
3Department of Dentistry, Taipei Veterans General Hospital, 112, Taipei, Taiwan
4Division of Hematology-Oncology, Department of Medicine, Taipei Veterans General Hospital, 112, Taipei, Taiwan
5Department of Otolaryngology, Taipei Veterans General Hospital, 112, Taipei, Taiwan
6Genomic Research Center, Taipei Veterans General Hospital, 112, Taipei, Taiwan
7Department of Medical Research & Education, Taipei Veterans General Hospital, 112, Taipei, Taiwan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial–mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

Mani, S. A. et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

Morel, A. P. et al. Generation of breast cancer stem cells through epithelial–mesenchymal transition. PLoS ONE 3, e2888 (2008).

Valk-Lingbeek, M. E., Bruggeman, S. W. & van Lohuizen, M. Stem cells and cancer: the polycomb connection. Cell 118, 409–418 (2004).

Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nat. Genet. 39, 157–158 (2007).

Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003).

Iwama, A. et al. Enhanced self-renewal of haematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21, 843–851 (2004).

Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40, 915–920 (2008).

Jacobs, J. J., Kieboom, K., Marino, S., Depinho, R. & van Lohuizen, M. The oncogene and polycomb-group gene Bmi1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

Bruggeman, S. W. et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes & Dev. 19, 1438–1443 (2005).

Czermin, B. et al. Drosophila Enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell 111, 185–196 (2002).

Müller, J. et al. Histone methyltransferase activity of a Drosophila polycomb group repressor complex. Cell 111, 197–208 (2002).

Min, J., Zhang, Y. & Xu, R. M. Structural basis for specific binding of polycomb chromodomain to histone H3 methylated at Lys 27. Genes & Dev. 17, 1823–1828 (2003).

Bracken, A. P. et al. The polycomb group proteins bind throughout the INK4A–ARF locus and are disassociated in senescent cells. Genes & Dev. 21, 525–530 (2007).

Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).

Leung, C. et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428, 337–341 (2004).

Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA. 104, 973–978 (2007).

Chiba, T. et al. The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma. Cancer Res. 68, 7742–7749 (2008).

Seiwert, T. Y. & Cohen, E. E. State-of-the-art management of locally advanced head and neck cancer. Br. J. Cancer 92, 1341–1348 (2005).

Janssen, H. L., Haustermans, K. M., Balm, A. J. & Begg, A. C. Hypoxia in head and neck cancer: how much, how important? Head Neck 27, 622–638 (2005).

Hoogsteen, I. J., Marres, H. A., Bussink, J., van der Kogel, A. J. & Kaanders, J. H. Tumor microenvironment in head and neck squamous cell carcinomas: predictive value and clinical relevance of hypoxic markers. A review. Head Neck 29, 591–604 (2007).

Furlong, E. E., Andersen, E. C., Null, B., White, K. P. & Scott, M. P. Patterns of gene expression during Drosophila mesoderm development. Science 293, 1629–1633 (2001).

Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

Yang, M. H. et al. Direct regulation of TWIST by HIF-1α promotes metastasis. Nat. Cell Biol. 10, 295–305 (2008).

Keith, B. & Simon, M. C. Hypoxia-inducible factors, stem cells and cancer. Cell 129, 465–472 (2007).

Chen, Y. C. et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem. Biophys. Res. Commun. 385, 307–313 (2009).

Huang, L. E., Gu, J., Schau, M. & Bunn, H. F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin–proteasome pathway. Proc. Natl Acad. Sci. USA. 95, 7987–7992 (1998).

Vermeulen, L. et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc. Natl Acad. Sci. USA. 105, 13427–13432 (2008).

Cao, Q. et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27, 7274–7284 (2008).

Tamura, G. et al. E-Cadherin gene promoter hypermethylation in primary human gastric carcinomas. J. Natl Cancer Inst. 92, 569–573 (2000).

Peinado, H., Ballestar, E., Esteller, M. & Cano, A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell Biol. 24, 306–319 (2004).

Hou, Z. et al. The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression. Mol. Cell Biol. 28, 3198–3207 (2008).

Herranz, N. et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol. Cell Biol. 28, 4772–4781 (2008).

Wellner, U. et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat. Cell Biol. 11, 1487–95 (2009).

Yang, M. H. & Wu, K. J. TWIST activated by hypoxia inducible factor-1 (HIF-1): implication in metastasis and development. Cell Cycle 7, 2090–2096 (2008).

Li, J. et al. Oncoprotein Bmi-1 renders apoptotic resistance to glioma cells through activation of the IKK-nuclear factor-κB pathway. Am. J. Pathol. 176, 699–709 (2010).

Vormittag, L. et al. Co-expression of Bmi-1 and podoplanin predicts overall survival in patients with squamous cell carcinoma of the head and neck treated with radio(chemo)therapy. Int. J. Radiat. Oncol. Biol. Phys. 73, 913–918 (2009).

Gustafsson, M. V. et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628 (2005).

Timmerman, L. A. et al. Notch promotes epithelial–mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18, 99–115 (2004).

Androutsellis-Theotokis, A. et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442, 823–826 (2006).

Huang, C. H. et al. Regulation of membrane-type 4 matrix metalloproteinase (MT4-MMP) by SLUG contributes to hypoxia-mediated metastasis. Neoplasia 11, 1371–1382 (2009).

Yang, M. H. et al. Increased NBS1 expression is a marker of aggressive head and neck cancer and overexpression of NBS1 contributes to transformation. Clin. Cancer Res. 12, 507–515 (2006).

Ginestier, C. et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007).

Huang, T. S. et al. Functional network reconstruction reveals somatic stemness genetic maps and dedifferentiation-like transcriptome reprogramming induced by GATA2. Stem Cells 26, 1186–1201 (2008).

Wang, H. W. et al. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat. Genet. 36, 687–693 (2004).

Birnie, R. et al. Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol. 9, R83 (2008).

Yang, M. H. et al. Overexpression of NBS1 induces epithelial–mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer. Oncogene 26, 1459–1467 (2007).

Ainbinder, E., Amir-Zilberstein, L., Yamaguchi, Y., Handa, H. & Dikstein, R. Elongation inhibition by DRB sensitivity-inducing factor is regulated by the A20 promoter via a novel negative element and NF-κB. Mol. Cell Biol. 24, 2444–2454 (2004).

Kang, M. K. et al. Elevated Bmi-1 expression is associated with dysplastic cell transformation during oral carcinogenesis and is required for cancer cell replication and survival. Br. J. Cancer 96, 126–133 (2007).

Foschini, M. P. et al. E-cadherin loss and Delta Np73L expression in oral squamous cell carcinomas showing aggressive behavior. Head Neck 30, 1475–1482 (2008).

Kumar, B. et al. EGFR, p16, HPV Titer, Bcl-xL and p53, sex, and smoking as indicators of response to therapy and survival in oropharyngeal cancer. J. Clin. Oncol. 26, 3128–3137 (2008).