Blue carbon stocks and exchanges along the California coast
Tóm tắt
Abstract. Salt marshes and seagrass meadows can sequester and store high quantities of organic carbon (OC) in their sediments relative to other marine and terrestrial habitats. Assessing carbon stocks, carbon sources, and the transfer of carbon between habitats within coastal seascapes are each integral in identifying the role of blue carbon habitats in coastal carbon cycling. Here, we quantified carbon stocks, sources, and exchanges in seagrass meadows, salt marshes, and unvegetated sediments in six bays along the California coast. In the top 20 cm of sediment, the salt marshes contained approximately twice as much OC as seagrass meadows did, 4.92 ± 0.36 kg OC m−2 compared to 2.20 ± 0.24 kg OC m−2, respectively. Both salt marsh and seagrass sediment carbon stocks were higher than previous estimates from this region but lower than global and US-wide averages, respectively. Seagrass-derived carbon was deposited annually into adjacent marshes during fall seagrass senescence. However, isotope mixing models estimate that negligible amounts of this seagrass material were ultimately buried in underlying sediment. Rather, the vast majority of OC in sediment across sites was likely derived from planktonic/benthic diatoms and/or C3 salt marsh plants.
Từ khóa
Tài liệu tham khảo
Alongi, D. M.: Blue carbon coastal sequestration for climate change mitigation. Springer International Publishing, Briefs in Climate Studies, https://doi.org/10.1007/978-3-319-91698-9, 2018.
Attard, K. M., Rodil, I. F., Berg, P., Norkko, J., Norkko, A., and Glud, R. N.: Seasonal metabolism and carbon export potential of a key coastal habitat: The perennial canopy-forming macroalga Fucus vesiculosus, Limnol. Ocean., 64, 149–164, https://doi.org/10.1002/lno.11026, 2019.
Benner, R., Fogel, M. L., and Sprague, E. K.: Diagenesis of belowground biomass of Spartina alterniflora in salt-marsh sediments, Limnol. Ocean., 36, 1358–1374, https://doi.org/10.4319/lo.1991.36.7.1358, 1991.
Blum, L. K.: Spartina alterniflora root dynamics in a Virginia marsh, Mar. Ecol. Prog. Ser., 102, 169–178, 1993.
Bos, A. R., Bouma, T. J., de Kort, G. L. J., and van Katwijk, M. M.: Ecosystem engineering by annual intertidal seagrass beds: Sediment accretion and modification, Estuar. Coast. Shelf Sci., 74, 344–348, https://doi.org/10.1016/j.ecss.2007.04.006, 2007.
Bouillon, S. and Connolly, R. M.: Carbon Exchange Among Tropical Coastal Ecosystems, in: Ecological Connectivity among Tropical Coastal Ecosystems, edited by: Nagelkerken, I., Springer Netherlands, Dordrecht, 45–70, 2009.
Brevik, E. C. and Homburg, J. A.: A 5000 year record of carbon sequestration from a coastal lagoon and wetland complex, Southern California, USA, CATENA, 57, 221–232, https://doi.org/10.1016/j.catena.2003.12.001, 2004.
Burdige, D. J.: Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?, Chem. Rev., 107, 467–485, https://doi.org/10.1021/cr050347q, 2007.
Cabello-Pasini, A., Muñiz-Salazar, R., and Ward, D. H.: Annual variations of biomass and photosynthesis in Zostera marina at its southern end of distribution in the North Pacific, Aquat. Bot., 76, 31–47, https://doi.org/10.1016/S0304-3770(03)00012-3, 2003.
Callaway, J. C., Borgnis, E. L., Turner, R. E., and Milan, C. S.: Carbon Sequestration and Sediment Accretion in San Francisco Bay Tidal Wetlands, Estuar. Coast., 35, 1163–1181, https://doi.org/10.1007/s12237-012-9508-9, 2012.
Capece, L.: The origin of sedimentary organic carbon in temperate seagrass meadows in California estuaries, Thesis 22619435, University of California, Davis, ProQuest Dissertations Publishing, 2019.
Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., and Lynch, J. C.: Global carbon sequestration in tidal, saline wetland soils, Global Biogeochem. Cy., 17, 1111, https://doi.org/10.1029/2002GB001917, 2003.
Christiansen, T., Wiberg, P. L., and Milligan, T. G.: Flow and sediment transport on a tidal salt marsh surface, Estuarine, Coast. Shelf Sci., 50, 315–331, https://doi.org/10.1006/ecss.2000.0548, 2000.
Cloern, J. E., Canuel, E. A., and Harris, D.: Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system, Limnol. Ocean., 47, 713–729, https://doi.org/10.4319/lo.2002.47.3.0713, 2002.
Conley, D. C., Austin, M., Davidson, I., Buscombe, D., and Masselink, G.: Grain size selection in seagrass beds, Coast. Dynam., 11, 200, 2017.
Connor, R. F., Chmura, G. L., and Beecher, C. B.: Carbon accumulation in bay of fundy salt marshes: Implications for restoration of reclaimed marshes, Global Biogeochem. Cy., 15, 943–954, https://doi.org/10.1029/2000GB001346, 2001.
Craft, C. B., Seneca, E. D., and Broome, S. W.: Loss on Ignition and Kjeldahl Digestion for Estimating Organic Carbon and Total Nitrogen in Estuarine Marsh Soils: Calibration with Dry Combustion, Estuaries, 14, 175, https://doi.org/10.2307/1351691, 1991.
Craven, K. F., Edwards, R. J., and Flood, R. P.: Source organic matter analysis of saltmarsh sediments using SIAR and its application in relative sea-level studies in regions of C4 plant invasion, Boreas, 46, 642–654, https://doi.org/10.1111/bor.12245, 2017.
Cyronak, T., Andersson, A. J., D'Angelo, S., Bresnahan, P., Davidson, C., Griffin, A., Kindeberg, T., Pennise, J., Takeshita, Y., and White, M.: Short-Term Spatial and Temporal Carbonate Chemistry Variability in Two Contrasting Seagrass Meadows: Implications for pH Buffering Capacities, Estuar. Coast., 41, 1282–1296, https://doi.org/10.1007/s12237-017-0356-5, 2018.
Dahl, M., Deyanova, D., Gütschow, S., Asplund, M. E., Lyimo, L. D., Karamfilov, V., Santos, R., Björk, M., and Gullström, M.: Sediment properties as important predictors of carbon storage in Zostera marina meadows: A Comparison of four European areas, PLoS ONE, 11, e0167493, https://doi.org/10.1371/journal.pone.0167493, 2016.
Dean, W. E.: Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods, J. Sediment. Res., 44, 242–248, https://doi.org/10.1306/74D729D2-2B21-11D7-8648000102C1865D, 1974.
Drexler, J. Z., Davis, M. J., Woo, I., and De La Cruz, S.: Carbon sources in the sediments of a restoring vs. historically unaltered salt marsh, Estuar. Coast., 43, 1345–1360, https://doi.org/10.1007/s12237-020-00748-7, 2020.
Duarte, C. M. and Cebrián, J.: The fate of marine autotrophic production, Limnol. Ocean., 41, 1758–1766, https://doi.org/10.4319/lo.1996.41.8.1758, 1996.
Duarte, C. M. and Krause-Jensen, D.: Export from seagrass mead- 95 ows contributes to marine carbon sequestration, Front. Mar. Sci., 4, https://doi.org/10.3389/fmars.2017.00013, 2017.
Duarte, C. M., Marbà, N., Gacia, E., Fourqurean, J. W., Beggins, J., Barrón, C., and Apostolaki, E. T.: Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows, Global Biogeochem. Cy., 24, GB4032, https://doi.org/10.1029/2010GB003793, 2010.
Escapa, M., Perillo, G. M. E., and Iribarne, O.: Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes, Geomorphology, 228, 147–157, https://doi.org/10.1016/j.geomorph.2014.08.032, 2015.
Ewers Lewis, C. J., Young, M. A., Ierodiaconou, D., Baldock, J. A., Hawke, B., Sanderman, J., Carnell, P. E., and Macreadie, P. I.: Drivers and modelling of blue carbon stock variability in sediments of southeastern Australia, Biogeosciences, 17, 2041–2059, https://doi.org/10.5194/bg-17-2041-2020, 2020.
Fourqurean, J. W., Moore, T. O., Fry, B., and Hollibaugh, J. T.: Spatial and temporal variation in C:N:P ratios, δ15N, and δ13C of eelgrass Zostera marina as indicators of ecosystem processes, Tomales Bay, California, USA, 157, 147–157, https://doi.org/10.3354/meps157147, 1997.
Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., Apostolaki, E. T., Kendrick, G. A., Krause-Jensen, D., McGlathery, K. J., and Serrano, O.: Seagrass ecosystems as a globally significant carbon stock, Nat. Geosci., 5, 505–509, https://doi.org/10.1038/ngeo1477, 2012.
Freedman, B., Stinson, G., and Lacoul, P.: Carbon credits and the conservation of natural areas, Environ. Rev., 17, 1–19, https://doi.org/10.1139/A08-007, 2009.
Gambi, M., Nowell, A., and Jumars, P.: Flume observations on flow dynamics in Zostera marina (eelgrass) beds, Mar. Ecol. Prog. Ser., 61, 159–169, https://doi.org/10.3354/meps061159, 1990.
Google Earth: Tomales Bay, California, USA. 38∘12′42.4′′ N 122∘55′39.7′′ W, 2020.
Greiner, J. T., McGlathery, K. J., Gunnell, J., and McKee, B. A.: Seagrass restoration enhances “Blue Carbon” sequestration in coastal waters, PLoS ONE, 8, e72469, https://doi.org/10.1371/journal.pone.0072469, 2013.
Green, E. P. and Short, F. T. (Eds.): World Atlas of Seagrasses, University of California Press, Berkeley, USA, 324 pp., 2003.
Hendriks, I., Sintes, T., Bouma, T., and Duarte, C.: Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping, Mar. Ecol. Prog. Ser., 356, 163–173, https://doi.org/10.3354/meps07316, 2008.
Holmquist, J. R., Windham-Myers, L., Bliss, N., Crooks, S., Morris, J. T., Megonigal, J. P., Troxler, T., Weller, D., Callaway, J., Drexler, J., Ferner, M. C., Gonneea, M. E., Kroeger, K. D., Schile-Beers, L., Woo, I., Buffington, K., Breithaupt, J., Boyd, B. M., Brown, L. N., Dix, N., Hice, L., Horton, B. P., MacDonald, G. M., Moyer, R. P., Reay, W., Shaw, T., Smith, E., Smoak, J. M., Sommerfield, C., Thorne, K., Velinsky, D., Watson, E., Grimes, K. W., and Woodrey, M.: accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States, Sci. Rep., 8, 9478, https://doi.org/10.1038/s41598-018-26948-7, 2018.
Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., and Telszewski, M. (Eds.): Coastal Blue Carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature, Arlington, Virginia, USA, 48–50, 2014.
Hyndes, G. A., Nagelkerken, I., McLeod, R. J., Connolly, R. M., Lavery, P. S., and Vanderklift, M. A.: Mechanisms and ecological role of carbon transfer within coastal seascapes, Biolog. Rev., 89, 232–254, https://doi.org/10.1111/brv.12055, 2014.
Ince, R., Hyndes, G. A., Lavery, P. S., and Vanderklift, M. A.: Marine macrophytes directly enhance abundances of sandy beach fauna through provision of food and habitat, Estuar. Coast. Shelf Sci., 74, 77–86, https://doi.org/10.1016/j.ecss.2007.03.029, 2007.
Jepson Flora Project: Jepson eFlora, available at: https://ucjeps.berkeley.edu/eflora/, last access: 5 February 2020.
Jiménez, M. A., Beltran, R., Traveset, A., Calleja, M. L., Delgado-Huertas, A., and Marbà, N.: Aeolian transport of seagrass (Posidonia oceanica) beach-cast to terrestrial systems, Estuar. Coast. Shelf Sci., 196, 31–44, https://doi.org/10.1016/j.ecss.2017.06.035, 2017.
Johannessen, S. C. and Macdonald, R. W.: Geoengineering with seagrasses: is credit due where credit is given?, Environ. Res. Lett., 11, 113001, https://doi.org/10.1088/1748-9326/11/11/113001, 2016.
Kauffman, J. B., Giovanonni, L., Kelly, J., Dunstan, N., Borde, A., Diefenderfer, H., Cornu, C., Janousek, C., Apple, J., and Brophy, L.: Total ecosystem carbon stocks at the marine-terrestrial interface: Blue carbon of the Pacific Northwest Coast, United States, Glob. Change Biol., 26, 5679–5692, https://doi.org/10.1111/gcb.15248, 2020.
Kelleway, J. J., Saintilan, N., Macreadie, P. I., and Ralph, P. J.: Sedimentary factors are key predictors of carbon storage in SE australian saltmarshes, Ecosystems, 19, 865–880, https://doi.org/10.1007/s10021-016-9972-3, 2016.
Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., Holmer, M., Marbà, N., and Middelburg, J. J.: Seagrass sediments as a global carbon sink: Isotopic constraints, Global Biogeochem. Cy., 24, GB4026, https://doi.org/10.1029/2010GB003848, 2010.
Largier, J. L., Hollibaugh, J. T., and Smith, S. V.: Seasonally hypersaline estuaries in mediterranean-climate regions, Estuar. Coast. Shelf Sci., 45, 789–797, https://doi.org/10.1006/ecss.1997.0279, 1997.
Lavery, P. S., Mateo, M.-Á., Serrano, O., and Rozaimi, M.: Variability in the carbon storage of seagrass habitats and its implications for global estimates of Blue Carbon ecosystem service, PLoS ONE, 8, e73748, https://doi.org/10.1371/journal.pone.0073748, 2013.
Leorri, E., Zimmerman, A. R., Mitra, S., Christian, R. R., Fatela, F., and Mallinson, D. J.: Refractory organic matter in coastal salt marshes-effect on C sequestration calculations, Sci. Tot. Environ., 633, 391–398, https://doi.org/10.1016/j.scitotenv.2018.03.120, 2018.
Lima, M., Do, A. C., Ward, R. D., and Joyce, C. B.: Environmental drivers of sediment carbon storage in temperate seagrass meadows, Hydrobiologia, 847, 1773–1792, https://doi.org/10.1007/s10750-019-04153-5, 2020.
Liu, S., Trevathan-Tackett, S. M., Ewers Lewis, C. J., Ollivier, Q. R., Jiang, Z., Huang, X., and Macreadie, P. I.: Beach-cast seagrass wrack contributes substantially to global greenhouse gas emissions, J. Environ. Manage., 231, 329–335, https://doi.org/10.1016/j.jenvman.2018.10.047, 2019.
Lovelock, C. E., Adame, M. F., Bennion, V., Hayes, M., O'Mara, J., Reef, R., and Santini, N. S.: Contemporary rates of carbon sequestration through vertical accretion of sediments in mangrove forests and saltmarshes of South East Queensland, Australia, Estuar. Coast., 37, 763–771, https://doi.org/10.1007/s12237-013-9702-4, 2014.
Lovelock, C. E., Atwood, T., Baldock, J., Duarte, C. M., Hickey, S., Lavery, P. S., Masque, P., Macreadie, P. I., Ricart, A. M., Serrano, O., and Steven, A.: Assessing the risk of carbon dioxide emissions from blue carbon ecosystems, Front. Ecol. Environ., 15, 257–265, https://doi.org/10.1002/fee.1491, 2017.
Lovelock, C. E. and Duarte, C. M.: Dimensions of Blue Carbon and emerging perspectives, Biol. Lett., 15, 20180781, https://doi.org/10.1098/rsbl.2018.0781, 2019.
Macreadie, P. I., Ewers-Lewis, C. J., Whitt, A. A., Ollivier, Q., Trevathan-Tackett, S. M., Carnell, P., and Serrano, O.: Comment on “Geoengineering with seagrasses: is credit due where credit is given?”, Environ. Res. Lett., 13, 028002, https://doi.org/10.1088/1748-9326/aaa7ad, 2018.
Macreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M., Friess, D. A., Kelleway, J. J., Kennedy, H., Kuwae, T., Lavery, P. S., Lovelock, C. E., Smale, D. A., Apostolaki, E. T., Atwood, T. B., Baldock, J., Bianchi, T. S., Chmura, G. L., Eyre, B. D., Fourqurean, J. W., Hall-Spencer, J. M., Huxham, M., Hendriks, I. E., Krause-Jensen, D., Laffoley, D., Luisetti, T., Marbà, N., Masque, P., McGlathery, K. J., Megonigal, J. P., Murdiyarso, D., Russell, B. D., Santos, R., Serrano, O., Silliman, B. R., Watanabe, K., and Duarte, C. M.: The future of Blue Carbon science, Nat. Commun., 10, 1–13, https://doi.org/10.1038/s41467-019-11693-w, 2019.
Mazarrasa, I., Marbà, N., Lovelock, C. E., Serrano, O., Lavery, P. S., Fourqurean, J. W., Kennedy, H., Mateo, M. A., Krause-Jensen, D., Steven, A. D. L., and Duarte, C. M.: Seagrass meadows as a globally significant carbonate reservoir, Biogeosciences, 12, 4993–5003, https://doi.org/10.5194/bg-12-4993-2015, 2015.
Mazarrasa, I., Samper-Villarreal, J., Serrano, O., Lavery, P. S., Lovelock, C. E., Marbà, N., Duarte, C. M., and Cortés, J.: Habitat characteristics provide insights of carbon storage in seagrass meadows, Mar. Pollut. Bull., 134, 106–117, https://doi.org/10.1016/j.marpolbul.2018.01.059, 2018.
Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2, Front. Ecol. Environ., 9, 552–560, https://doi.org/10.1890/110004, 2011.
Merkel and Associates: Inc. 2017 Tomales Bay Eelgrass Inventory, prepared the National Oceanic Atmospheric Administration (NOAA) Greater Farallones National Marine Sanctuary, December, 2017.
Milliman, J. D.: Precipitation and Cementation of Deep-Sea Carbonate Sediments, in: Deep-Sea Sediments: Physical and Mechanical Properties, edited by: Inderbitzen, A. L., Springer US, Boston, MA., 463–476, 1974.
Miyajima, T., Hori, M., Hamaguchi, M., Shimabukuro, H., Adachi, H., Yamano, H., and Nakaoka, M.: Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows, Global Biogeochem. Cy., 29, 397–415, https://doi.org/10.1002/2014GB004979, 2015.
Miyajima, T., Hori, M., Hamaguchi, M., Shimabukuro, H., and Yoshida, G.: Geophysical constraints for organic carbon sequestration capacity of Zostera marina seagrass meadows and surrounding habitats, 62, 954–972, https://doi.org/10.1002/lno.10478, 2017.
Nahlik, A. M. and Fennessy, M. S.: Carbon storage in US wetlands, Nat. Commun., 7, 13835, https://doi.org/10.1038/ncomms13835, 2016.
O'Donnell, B. C.: Carbon sequestration within Northeastern Pacific seagrass meadows, Thesis 10607483, University of California, Davis, ProQuest Dissertations Publishing, 1–83, 2017.
Oakes, J. M. and Eyre, B. D.: Transformation and fate of microphytobenthos carbon in subtropical, intertidal sediments: potential for long-term carbon retention revealed by 13C-labeling, Biogeosciences, 11, 1927–1940, https://doi.org/10.5194/bg-11-1927-2014, 2014.
Ouyang, X. and Lee, S. Y.: Updated estimates of carbon accumulation rates in coastal marsh sediments, Biogeosciences, 11, 5057–5071, https://doi.org/10.5194/bg-11-5057-2014, 2014.
Parnell, A. C. and Jackson, A. L.: SIAR: stable isotope analysis in R. R package version 4.2., available at: http://CRAN.R-project.org/package=siar (last access: 2 July 2021), 2013.
Patrick, W. H. and DeLaune, R. D.: Subsidence accretion and sea level rise in south San Francisco Bay marshes, Limnol. Ocean., 35, 1389–1395, https://doi.org/10.4319/lo.1990.35.6.1389, 1990.
Peck, E. K., Wheatcroft, R. A., and Brophy, L. S.: Controls on Sediment Accretion and Blue Carbon Burial in Tidal Saline Wetlands: Insights From the Oregon Coast, USA, J. Geophys. Res.-Biogeo., 125, e2019JG005464, https://doi.org/10.1029/2019JG005464, 2020.
Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., Craft, C., Fourqurean, J. W., Kauffman, J. B., Marbà, N., Megonigal, P., Pidgeon, E., Herr, D., Gordon, D., and Baldera, A.: Estimating global “Blue Carbon” emissions from conversion and degradation of vegetated coastal ecosystems, edited by: Thrush, S., PLoS ONE, 7, e43542, https://doi.org/10.1371/journal.pone.0043542, 2012.
Perdue, E. M. and Koprivnjak, J. F.: Using the C/N ratio to estimate terrigenous inputs of organic matter to aquatic environments, Estuar. Coast. Shelf Sci., 73, 65–72, https://doi.org/10.1016/j.ecss.2006.12.021, 2007.
Poppe, K. L. and Rybczyk, J. M.: Carbon Sequestration in a Pacific Northwest Eelgrass (Zostera marina) Meadow, BioOne, 92, 80–91, https://doi.org/10.3955/046.092.0202, 2018.
Postlethwaite, V. R., McGowan, A. E., Kohfeld, K. E., Robinson, C. L. K., and Pellatt, M. G.: Low blue carbon storage in eelgrass (Zostera marina) meadows on the Pacific Coast of Canada, PLOS ONE, 13, e0198348, https://doi.org/10.1371/journal.pone.0198348, 2018.
Prentice, C., Hessing-Lewis, M., Sanders-Smith, R., and Salomon, A. K.: Reduced water motion enhances organic carbon stocks in temperate eelgrass meadows, Limnol. Ocean., 64, 2389–2404, https://doi.org/10.1002/lno.11191, 2019.
Prentice, C., Poppe, K. L., Lutz, M., Murray, E., Stephens, T. A., Spooner, A., Hessing-Lewis, M., Sanders-Smith, R., Rybczyk, J. M., Apple, J., Short, F. T., Gaeckle, J., Helms, A., Mattson, C., Raymond, W. W., and Klinger, T.: A Synthesis of Blue Carbon Stocks, Sources, and Accumulation Rates in Eelgrass (Zostera 100 marina) Meadows in the Northeast Pacific, Global Biogeochem. Cy., 34, e2019GB006345, https://doi.org/10.1029/2019GB006345, 2020.
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: 2 July 2021), 2018.
Ricart, A., Dalmau, A., Pérez, M., and Romero, J.: Effects of landscape configuration on the exchange of materials in seagrass ecosystems, Mar. Ecol. Prog. Ser., 532, 89–100, https://doi.org/10.3354/meps11384, 2015.
Ricart, A. M., Pérez, M., and Romero, J.: Landscape configuration modulates carbon storage in seagrass sediments, Estuar. Coast. Shelf Sci., 185, 69–76, https://doi.org/10.1016/j.ecss.2016.12.011, 2017.
Ricart, A. M., York, P. H., Bryant, C. V., Rasheed, M. A., Ierodiaconou, D., and Macreadie, P. I.: High variability of Blue Carbon storage in seagrass meadows at the estuary scale, Sci. Rep., 10, 5865, https://doi.org/10.1038/s41598-020-62639-y, 2020.
Rogers, K., Kelleway, J. J., Saintilan, N., Megonigal, J. P., Adams, J. B., Holmquist, J. R., Lu, M., Schile-Beers, L., Zawadzki, A., Mazumder, D., and Woodroffe, C. D.: Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise, Nature, 567, 91–95, https://doi.org/10.1038/s41586-019-0951-7, 2019.
Röhr, M. E., Holmer, M., Baum, J. K., Björk, M., Boyer, K., Chin, D., Chalifour, L., Cimon, S., Cusson, M., Dahl, M., Deyanova, D., Duffy, J. E., Eklöf, J. S., Geyer, J. K., Griffin, J. N., Gullström, M., Hereu, C. M., Hori, M., Hovel, K. A., Hughes, A. R., Jorgensen, P., Kiriakopolos, S., Moksnes, P.-O., Nakaoka, M., O'Connor, M. I., Peterson, B., Reiss, K., Reynolds, P. L., Rossi, F., Ruesink, J., Santos, R., Stachowicz, J. J., Tomas, F., Lee, K.-S., Unsworth, R. K. F., and Boström, C.: Blue carbon storage capacity of temperate Eelgrass (Zostera marina) meadows, Global Biogeochem. Cy., 32, 1457–1475, https://doi.org/10.1029/2018GB005941, 2018.
Saintilan, N., Rogers, K., Mazumder, D., and Woodroffe, C. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands, Estuar. Coast. Shelf Sci., 128, 84–92, https://doi.org/10.1016/j.ecss.2013.05.010, 2013.
Schlosser, S. and Eicher, A.: The Humboldt Bay and Eel River Estuary Benthic Habitat Project, California Sea Grant Publication T-075, 246 p, 2012.
Serrano, O., Mateo, M. A., Renom, P., and Julià, R.: Characterization of soils beneath a Posidonia oceanica meadow, Geoderma, 185, 26–36, https://doi.org/10.1016/j.geoderma.2012.03.020, 2012.
Serrano, O., Lavery, P. S., Duarte, C. M., Kendrick, G. A., Calafat, A., York, P. H., Steven, A., and Macreadie, P. I.: Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?, Biogeosciences, 13, 4915–4926, https://doi.org/10.5194/bg-13-4915-2016, 2016.
Serrano, O., Kelleway, J. J., Lovelock, C., and Lavery, P. S.: Conservation of Blue Carbon Ecosystems for Climate Change Mitigation and Adaptation, Coastal Wetlands, Elsevier., 965–996, 2019.
St. Laurent, K. A., Hribar, D. J., Carlson, A. J., Crawford, C. M., and Siok, D.: Assessing coastal carbon variability in two Delaware tidal marshes, J. Coast Conserv., 24, 65, https://doi.org/10.1007/s11852-020-00783-3, 2020.
Trevathan-Tackett, S. M., Macreadie, P. I., Sanderman, J., Baldock, J., Howes, J. M., and Ralph, P. J.: A Global Assessment of the Chemical Recalcitrance of Seagrass Tissues: Implications for Long-Term Carbon Sequestration, Front. Plant Sci., 8, 925, https://doi.org/10.3389/fpls.2017.00925, 2017.
Trimble, S. W.: Historical hydrographic and hydrologic changes in the San Diego creek watershed, Newport Bay, California, J. Historic. Geogr., 29, 422–444, https://doi.org/10.1006/jhge.2002.0485, 2003.
Valiela, I. and Cole, M. L.: Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads, Ecosystems, 5, 92–102, https://doi.org/10.1007/s10021-001-0058-4, 2002.
Van Dyke, E. and Wasson, K.: Historical ecology of a central California estuary: 150 years of habitat change, Estuaries, 28, 173–189, https://doi.org/10.1007/BF02732853, 2005.
Ward, M. A.: Core data – Organic carbon, grain size, elemental/isotopic composition, Dryad, [data set], https://doi.org/10.5061/dryad.m0cfxpp31, last access: 5 July 2021.
Wilkinson, G. M., Besterman, A., Buelo, C., Gephart, J., and Pace, M. L.: A synthesis of modern organic carbon accumulation rates in coastal and aquatic inland ecosystems, Sci. Rep., 8, 15736, https://doi.org/10.1038/s41598-018-34126-y, 2018.
Yang, S. L., Li, H., Ysebaert, T., Bouma, T. J., Zhang, W. X., Wang, Y. Y., Li, P., Li, M., and Ding, P. X.: Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: On the role of physical and biotic controls, Estuar. Coast. Shelf Sci., 77, 657–671, https://doi.org/10.1016/j.ecss.2007.10.024, 2008.