Blood and tissue neuroendocrine tumor gene cluster analysis correlate, define hallmarks and predict disease status

Endocrine-Related Cancer - Tập 22 Số 4 - Trang 561-575 - 2015
Mark Kidd1, Ignat Drozdov1, Irvin M. Modlin1
1Wren Laboratories, 35 NE Industrial Road, Branford, Connecticut 06405, USA

Tóm tắt

A multianalyte algorithmic assay (MAAA) identifies circulating neuroendocrine tumor (NET) transcripts (n=51) with a sensitivity/specificity of 98%/97%. We evaluated whether blood measurements correlated with tumor tissue transcript analysis. The latter were segregated into gene clusters (GC) that defined clinical ‘hallmarks’ of neoplasia. A MAAA/cluster integrated algorithm (CIA) was developed as a predictive activity index to define tumor behavior and outcome. We evaluated three groups. Group 1: publically available NET transcriptome databases (n=15; GeneProfiler). Group 2: prospectively collected tumors and matched blood samples (n=22; qRT-PCR). Group 3: prospective clinical blood samples,n=159: stable disease (SD):n=111 and progressive disease (PD):n=48. Regulatory network analysis, linear modeling, principal component analysis (PCA), and receiver operating characteristic analyses were used to delineate neoplasia ‘hallmarks’ and assess GC predictive utility. Our results demonstrated: group 1: NET transcriptomes identified (92%) genes elevated. Group 2: 98% genes elevated by qPCR (fold change >2,P<0.05). Correlation analysis of matched blood/tumor was highly significant (R2=0.7,P<0.0001), and 58% of genes defined nine omic clusters (SSTRome, proliferome, signalome, metabolome, secretome, epigenome, plurome, and apoptome). Group 3: six clusters (SSTRome, proliferome, metabolome, secretome, epigenome, and plurome) differentiated SD from PD (area under the curve (AUC)=0.81). Integration with blood-algorithm amplified the AUC to 0.92±0.02 for differentiating PD and SD. The CIA defined a significantly lower SD score (34.1±2.6%) than in PD (84±2.8%,P<0.0001). In conclusion, circulating transcripts measurements reflect NET tissue values. Integration of biologically relevant GC differentiate SD from PD. Combination of GC data with the blood-algorithm predicted disease status in >92%. Blood transcript measurement predicts NET activity.

Từ khóa


Tài liệu tham khảo

10.1172/JCI67963

10.1093/bib/bbp034

Bralten LB Kloosterhof NK Gravendeel LA Sacchetti A Duijm EJ Kros JM van den Bent MJ Hoogenraad CC Sillevis Smitt PA French PJ 2010 Integrated genomic profiling identifies candidate genes implicated in glioma-genesis and a novel LEO1–SLC12A1 fusion gene. Genes, Chromosomes & Cancer 49 509–517. (doi:10.1002/gcc.20760).

10.3748/wjg.v21.i1.333

Cao Y Gao Z Li L Jiang X Shan A Cai J Peng Y Li Y Jiang X Huang X 2013 Whole exome sequencing of insulinoma reveals recurrent T372R mutations in YY1. Nature Communications 4 2810. (doi:10.1038/ncomms3810).

10.1371/journal.pone.0016010

10.1016/j.eururo.2013.07.006

10.1002/cncr.24180

10.1007/s10549-013-2748-y

Fleige S Walf V Huch S Prgomet C Sehm J Pfaffl MW 2006 Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnology Letters 28 1610–1613. (doi:10.1007/s10529-006-9127-2).

10.1093/nar/gks1094

10.1038/ng.2821

10.1152/ajpgi.00066.2014

10.1186/1471-2407-13-569

10.1016/S0092-8674(00)81683-9

10.1016/j.cell.2011.02.013

10.1148/radiology.143.1.7063747

10.1148/radiology.148.3.6878708

10.1158/0008-5472.CAN-07-6866

10.1093/nar/gng015

Jaeger U Kainz B 2003 Monitoring minimal residual disease in AML: the right time for real time. Annals of Hematology 82 139–147. (doi:10.1007/s00277-002-0601-1).

10.1158/1078-0432.CCR-10-2703

10.1159/000100508

10.1093/bioinformatics/btn647

10.1002/cncr.20750

10.1245/ASO.2006.12.011

10.1152/physiolgenomics.00251.2006

10.1186/1471-2164-15-595

10.1093/carcin/bgm291

10.4143/crt.2013.102

10.1016/j.ecl.2010.12.001

10.1038/modpathol.2008.174

10.1677/erc.0.0100437

10.1093/nar/gkq1237

10.1053/j.gastro.2013.10.020

10.3109/1354750X.2012.654511

10.1186/1471-2105-7-49

10.1371/journal.pone.0001828

10.1371/journal.pone.0063364

Modlin I Drozdov I Kidd M 2013b A multitranscript blood neuroendocrine tumor molecular signature to identify treatment efficacy and disease progress. Journal of Clinical Oncology 31 (Suppl) A4137.

10.1530/ERC-14-0190

10.1159/000368363

Modlin I Drozdov I Kidd M 2014c Gut neuroendocrine tumor blood qPCR fingerprint assay: characteristics and reproducibility. Clinical Chemistry 52 419–429. (doi:10.1515/cclm-2013-0496).

10.1530/EC-14-0100

Muscarella LA D'Alessandro V la Torre A Copetti M De Cata A Parrella P Sperandeo M Pellegrini F Frusciante V Maiello E 2011 Gene expression of somatostatin receptor subtypes SSTR2a, SSTR3 and SSTR5 in peripheral blood of neuroendocrine lung cancer affected patients. Cellular Oncology 19 19. (doi:10.1007/s13402-011-0025-9).

10.1158/1078-0432.CCR-09-0336

10.1007/s11899-996-0003-x

10.1111/j.1365-2141.2004.04952.x

10.1677/erc.1.00841

10.1007/s11033-012-1574-3

10.1007/s002590100541

Rindi G Wiedenmann B 2011 Neuroendocrine neoplasms of the gut and pancreas: new insights. Nature Reviews. Endocrinology 2 120. (doi:10.1038/nrendo.2011.120).

10.1007/s00428-006-0250-1

10.1007/s00428-007-0452-1

10.1186/1756-8935-7-15

10.1309/YQBR9C05RU4DD3RN

Travis WD, Brambilla E, Muller-Hermlink H & Harris C 2004 World Health Organization classification of tumours. Pathology and genetics of tumours of the lung, pleura, thymus and heart. Lyon, France: IARC Press

10.1530/ERC-14-0106

Wang E Zaman N McGee S Milanese JS Masoudi-Nejad A O'Connor-McCourt M 2014 Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data. Seminars in Cancer Biology 30 4–12. (doi:10.1016/j.semcancer.2014.04.002).

10.1046/j.1365-2362.1998.00397.x

10.1002/pbc.25109