Blocking drug efflux mechanisms facilitate genome engineering process in hypercellulolytic fungus, Penicillium funiculosum NCIM1228

Biotechnology for Biofuels - Tập 14 - Trang 1-18 - 2021
Anmoldeep Randhawa1,2, Nandita Pasari1,3, Tulika Sinha1, Mayank Gupta1,2, Anju M. Nair1,2, Olusola A. Ogunyewo1, Sandhya Verma3, Praveen Kumar Verma3, Syed Shams Yazdani1,2
1Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
2DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
3National Institute of Plant Genome Research, New Delhi, India

Tóm tắt

Penicillium funiculosum NCIM1228 is a non-model filamentous fungus that produces high-quality secretome for lignocellulosic biomass saccharification. Despite having desirable traits to be an industrial workhorse, P. funiculosum has been underestimated due to a lack of reliable genetic engineering tools. Tolerance towards common fungal antibiotics had been one of the major hindrances towards development of reliable transformation tools against the non-model fungi. In this study, we sought to understand the mechanism of drug tolerance of P. funiculosum and the provision to counter it. We then attempted to identify a robust method of transformation for genome engineering of this fungus. Penicillium funiculosum showed a high degree of drug tolerance towards hygromycin, zeocin and nourseothricin, thereby hindering their use as selectable markers to obtain recombinant transformants. Transcriptome analysis suggested a high level expression of efflux pumps belonging to ABC and MFS family, especially when complex carbon was used in growth media. Antibiotic selection medium was optimized using a combination of efflux pump inhibitors and suitable carbon source to prevent drug tolerability. Protoplast-mediated and Agrobacterium-mediated transformation were attempted for identifying efficiencies of linear and circular DNA in performing genetic manipulation. After finding Ti-plasmid-based Agrobacterium-mediated transformation more suitable for P. funiculosum, we improvised the system to achieve random and homologous recombination-based gene integration and deletion, respectively. We found single-copy random integration of the T-DNA cassette and could achieve 60% efficiency in homologous recombination-based gene deletions. A faster, plasmid-free, and protoplast-based CRISPR/Cas9 gene-editing system was also developed for P. funiculosum. To show its utility in P. funiculosum, we deleted the gene coding for the most abundant cellulase Cellobiohydrolase I (CBH1) using a pair of sgRNA directed towards both ends of cbh1 open reading frame. Functional analysis of ∆cbh1 strain revealed its essentiality for the cellulolytic trait of P. funiculosum secretome. In this study, we addressed drug tolerability of P. funiculosum and developed an optimized toolkit for its genome modification. Hence, we set the foundation for gene function analysis and further genetic improvements of P. funiculosum using both traditional and advanced methods.

Tài liệu tham khảo

Ogunmolu FE, Kaur I, Gupta M, Bashir Z, Pasari N, Yazdani SS. Proteomics insights into the biomass hydrolysis potentials of a hypercellulolytic fungus Penicillium funiculosum. J Proteome Res. 2015;14:4342–58. Ogunmolu FE, Kaur I, Pasari N, Gupta M, Yazdani SS. Quantitative multiplexed profiling of Penicillium funiculosum secretome grown on polymeric cellulase inducers and glucose. J Proteomics. 2018;179:150–60. Lachke A, Bastawde K, Powar V, Srinivasan M. Isolation of a hypercellulolytic mutant (Cu-1) of Penicillium funiculosum. Enzyme Microbial Technol. 1986;8:105–8. Bohlmann R, Belshaw N, Archer D, Alcocer M, Fish N, Pierrard J, et al. Recombinant Penicillium funiculosum for homologous and heterologous protein production. Google Patents; 2005. Ruiz-Díez B. Strategies for the transformation of filamentous fungi. J Appl Microbiol. 2002;92:189–95. Delmas S, Llanos A, Parrou J-L, Kokolski M, Pullan ST, Shunburne L, et al. Development of an unmarked gene deletion system for the filamentous fungi Aspergillus niger and Talaromyces versatilis. Appl Environ Microbiol. 2014;80:3484–7. Berman J, Krysan DJ. Drug resistance and tolerance in fungi. Nature Rev Microbiol. 2020. p. 1–13. Randhawa A, Ogunyewo OA, Eqbal D, Gupta M, Yazdani SS. Disruption of zinc finger DNA binding domain in catabolite repressor Mig1 increases growth rate, hyphal branching, and cellulase expression in hypercellulolytic fungus Penicillium funiculosum NCIM1228. Biotechnol Biofuels. 2018;11:15. Rosenberg A, Ene IV, Bibi M, Zakin S, Segal ES, Ziv N, et al. Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia. Nat Commun. 2018;9:1–14. Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of antifungal drug resistance. Cold Spring Harbor Perspect Med. 2015;5:a019752. Sipos G, Kuchler K. Fungal ATP-binding cassette (ABC) transporters in drug resistance & detoxification. Curr Drug Targets. 2006;7:471–81. Suzuki S, Tada S, Fukuoka M, Taketani H, Tsukakoshi Y, Matsushita M, et al. A novel transformation system using a bleomycin resistance marker with chemosensitizers for Aspergillus oryzae. Biochem Biophys Res Commun. 2009;383:42–7. Nizam S, Singh K, Verma PK. Expression of the fluorescent proteins DsRed and EGFP to visualize early events of colonization of the chickpea blight fungus Ascochyta rabiei. Curr Genet. 2010;56:391–9. Głowacka K, Kromdijk J, Leonelli L, Niyogi KK, Clemente TE, Long SP. An evaluation of new and established methods to determine T-DNA copy number and homozygosity in transgenic plants. Plant Cell Environ. 2016;39:908–17. Ogunmolu FE, Jagadeesha NBK, Kumar R, Kumar P, Gupta D, Yazdani SS. Comparative insights into the saccharification potentials of a relatively unexplored but robust Penicillium funiculosum glycoside hydrolase 7 cellobiohydrolase. Biotechnol Biofuels. 2017;10:71. Oakley BR, Rinehart JE, Mitchell BL, Oakley CE, Cannona C, Gray GL, et al. Cloning, mapping and molecular analysis of the pyrG (orotidine-5’-phosphate decarboxylase) gene of Aspergillus nidulans. Gene. 1987;61:385–99. Mari P-O, Florea BI, Persengiev SP, Verkaik NS, Brüggenwirth HT, Modesti M, et al. Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc Natl Acad Sci. 2006;103:18597–602. Tkacz J, Dahl-Roshak AM, Ibrahim N, Paress PS. Agrobacterium-mediated transformation of filamentous fungi. Handbook of Industrial Mycology. 2004:105. Kim S, Kim D, Cho SW, Kim J, Kim J-S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24:1012–9. Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol. 2015;33:1162–4. Schuster M, Kahmann R. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes. Fungal Genet Biol. 2019;130:43–53. Pohl C, Kiel JAKW, Driessen AJM, Bovenberg RAL, Nygård Y. CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synthetic Biol. 2016;5:754–64. Zhang J-P, Li X-L, Li G-H, Chen W, Arakaki C, Botimer GD, et al. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol. 2017;18:1–18. Viikari L, Vehmaanperä J, Koivula A. Lignocellulosic ethanol: from science to industry. Biomass Bioenerg. 2012;46:13–24. Coleman JJ, Mylonakis E. Efflux in fungi: la piece de resistance. PLoS Pathogens. 2009;5:e1000486. Beever R, Bollard E. The nature of the stimulation of fungal growth by potato extract. Microbiology. 1970;60:273–9. Kowalski CH, Cramer RA. If looks could kill: Fungal macroscopic morphology and virulence. PLoS Pathog. 2020;16:e1008612. Düring K. A plant transformation vector with a minimal T-DNA. Transgenic Res. 1994;3:138–40. Ogunyewo OA, Randhawa A, Gupta M, Kaladhar VC, Verma PK, Yazdani SS. Synergistic action of a lytic polysaccharide monooxygenase and a cellobiohydrolase from Penicillium funiculosum in cellulose saccharification under high-level substrate loading. Appl Environ Microbiol. 2020. https://doi.org/10.1128/AEM_01769-20. dos Santos FC, de Oliveira MAS, Seixas FAV, Barbosa-Tessmann IP. A Novel Cellobiohydrolase I (CBHI) from Penicillium digitatum: production, purification, and characterization. Appl Biochem Biotechnol. 2020. https://doi.org/10.1007/s12010-020-03307-9. Ogunyewo OA, Randhawa A, Joshi M, Jain KK, Wadekar P, Odaneth AA, et al. Engineered Penicillium funiculosum produces potent lignocellulolytic enzymes for saccharification of various pretreated biomasses. Process Biochem. 2020;92:49–60. Li D, Sirakova T, Rogers L, Ettinger WF, Kolattukudy P. Regulation of constitutively expressed and induced cutinase genes by different zinc finger transcription factors in Fusarium solani f. sp. pisi (Nectria haematococca). J Biol Chem. 2002;277:7905–12. Liu Z, Friesen TL. Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens. Plant fungal pathogens: Springer; 2012. p. 365–75. Utermark J, Karlovsky P. Genetic transformation of filamentous fungi by Agrobacterium tumefaciens. Nat Protocols Online. 2008. https://doi.org/10.1038/nprot.2008.83. Xie S, Shen B, Zhang C, Huang X, Zhang Y. sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PloS one. 2014;9:e100448. Southern E. Southern blotting. Nat Protoc. 2006;1:518–525.