Bivalve aquaculture‐environment interactions in the context of climate change

Global Change Biology - Tập 22 Số 12 - Trang 3901-3913 - 2016
Ramón Filgueira1,2, Thomas Guyondet1, Luc A. Comeau1, Réjean Tremblay3
1Department of Fisheries and Oceans Gulf Fisheries Centre Science Branch 343 Université Avenue P.O. Box 5030 Moncton NB E1C 9B6 Canada
2Marine Affairs Program, Dalhousie University, 1355 Oxford St., P.O. Box 15000, Halifax, NS B3H 1R2, Canada
3Institut des sciences de la mer (ISMER) Université du Québec à Rimouski (UQAR) 310, allée des Ursulines CP 3300 Rimouski QC G5L 3A1 Canada

Tóm tắt

AbstractCoastal embayments are at risk of impacts by climate change drivers such as ocean warming, sea level rise and alteration in precipitation regimes. The response of the ecosystem to these drivers is highly dependent on their magnitude of change, but also on physical characteristics such as bay morphology and river discharge, which play key roles in water residence time and hence estuarine functioning. These considerations are especially relevant for bivalve aquaculture sites, where the cultured biomass can alter ecosystem dynamics. The combination of climate change, physical and aquaculture drivers can result in synergistic/antagonistic and nonlinear processes. A spatially explicit model was constructed to explore effects of the physical environment (bay geomorphic type, freshwater inputs), climate change drivers (sea level, temperature, precipitation) and aquaculture (bivalve species, stock) on ecosystem functioning. A factorial design led to 336 scenarios (48 hydrodynamic × 7 management). Model outcomes suggest that the physical environment controls estuarine functioning given its influence on primary productivity (bottom‐up control dominated by riverine nutrients) and horizontal advection with the open ocean (dominated by bay geomorphic type). The intensity of bivalve aquaculture ultimately determines the bivalve–phytoplankton trophic interaction, which can range from a bottom‐up control triggered by ammonia excretion to a top‐down control via feeding. Results also suggest that temperature is the strongest climate change driver due to its influence on the metabolism of poikilothermic organisms (e.g. zooplankton and bivalves), which ultimately causes a concomitant increase of top‐down pressure on phytoplankton. Given the different thermal tolerance of cultured species, temperature is also critical to sort winners from losers, benefiting Crassostrea virginica over Mytilus edulis under the specific conditions tested in this numerical exercise. In general, it is predicted that bays with large rivers and high exchange with the open ocean will be more resilient under climate change when bivalve aquaculture is present.

Từ khóa


Tài liệu tham khảo

10.1126/science.1112122

10.1016/j.jmarsys.2015.05.008

10.1016/S0990-7440(03)00003-2

Barange M, 2009, Climate Change Implications for Fisheries and Aquaculture: Overview of Current Scientific Knowledge, 7

10.1038/nature05317

10.1038/nclimate1838

10.3354/meps08072

10.1111/j.1365-2486.2009.02046.x

Bugden G, 2014, Nitrogen Loading Criteria for Estuaries in Prince Edward Island

10.1111/j.1365-2486.2009.01995.x

10.1016/j.aquaculture.2013.06.017

Comeau LA, 2008, Comparison of Eastern Oyster (Crassostrea Virginica) and Blue Mussel (Mytilus Edulis) Filtration Rates at low Temperatures

10.1016/j.gloplacha.2004.07.001

10.1098/rspb.2015.2592

10.1111/j.1461-0248.2008.01253.x

10.3354/meps06997

10.1002/9780470960967.ch4

10.1016/j.seares.2012.10.012

10.1201/9781420049787

10.2307/1351686

10.2307/1352999

10.3354/meps198131

10.1016/j.aquaculture.2006.07.045

10.1016/j.ecss.2011.06.016

FAO, 2014, The State of World Fisheries and Aquaculture 2014

Feindel N, 2013, Climate Change Impacts, Vulnerabilities and Opportunities Analysis of the Marine Atlantic Basin, 195

10.1016/j.aquaculture.2006.12.017

10.1016/j.seares.2011.04.006

10.1002/2013EF000145

10.1016/j.ecolind.2012.10.001

10.1016/j.jmarsys.2014.03.015

10.1016/j.ecolind.2013.12.006

10.1016/j.marpolbul.2015.08.048

10.1016/j.margeo.2004.05.009

10.3354/meps10612

10.3354/meps08659

10.1007/978-3-642-78353-1_11

10.2307/1352288

10.1016/j.jmarsys.2007.10.007

10.1016/j.seares.2010.05.003

10.3354/aei00083

10.1007/s12237-014-9899-x

HandisydeNT RossLG BadjeckM‐C AllisonEH(2006)The Effects of CC on World Aquaculture: A Global Perspective. Aquaculture and Fish Genetics Research Programme Stirling Institute of Aquaculture. Final Technical Report DFID Stirling.151pp.

10.1111/j.1461-0248.2005.00871.x

10.1016/j.ecolmodel.2013.10.024

10.1104/pp.112.206524

Kennedy VS, 1991, Habitat Requirements for Chesapeake Bay Living Resources, 3.1

Kjerfve B, 1986, Estuarine Variability, 62

Kooijman SALM, 2010, Dynamic Energy Budget Theory for Metabolic Organisms

Larsen P, 1986, River and Lake ice Engineering, 203

LeBlanc N, 2010, The Effect of Elevated Water Temperature Stress on the Mussel Mytilus Edulis (L.), Survival and Genetic Characteristics

10.4319/lo.2008.53.5.1734

10.1016/j.seares.2010.04.007

10.3354/meps067035

10.3354/meps176231

10.1111/j.1365-2486.2009.01960.x

10.3354/meps197193

10.1016/j.ecss.2009.12.013

10.1080/08920753.2011.600238

10.1016/S0044-8486(99)00219-7

10.4319/lo.2006.51.1_part_2.0448

10.1242/jeb.006007

10.3354/ab00124

10.1016/j.dsr.2015.03.004

10.3354/meps228143

10.3354/meps08774

10.3354/meps338131

10.1093/icesjms/fsn028

10.1016/j.seares.2011.04.009

10.1016/j.marpol.2013.01.009

10.3354/meps09801

10.1007/BF02691304

10.1080/13669871003660742

10.1007/BF00390638

10.1139/f01-026

10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

10.1111/j.1365-2486.2008.01571.x

10.1007/s10584-012-0485-6

10.1093/icb/ict086

10.1016/S0022-0981(97)00114-7

10.1051/alr/2011113

10.1016/j.aquaculture.2008.01.038

10.1371/journal.pone.0030546

Vasseur L, 2008, Vivre Avec les Changements Climatiques au Canada: Édition 2007, 119