Bitter gourd flavored Non-Alcoholic Wheat Beer (NAWB) exhibited antidiabetic properties by modulating carbohydrate metabolizing enzymes and upregulates insulin and GLUT-2 mRNA expressions in High Fat Diet/Streptozotocin (HFD/STZ) induced diabetic rats
Tóm tắt
To improve the control of Type 2 diabetes (T2D), this study investigated the potential benefits of an alcohol-free beer flavored with bitter gourd leaves, a plant with proven hypoglycemic properties. The high fat/streptozotocin (HFD/STZ) model was used to induce diabetes in Wistar rats as test subjects. The rats were divided into eight groups (n = 5) as follows: HP (STZ + 100% Hops); BG (STZ + 100% Bitter Gourd); 75:25BG (STZ + 75% Hops; 25%BG); 50:50BG (STZ + 50%Hops50%Bitter Gourd); 25:75BG (STZ + 25%Hops75%Bitter Gourd); Acarbose (STZ + Acarbose); DC (STZ-diabetic control group); NC (Normal Control group). Following a 14-day treatment, there was a significant (p < 0.05) reduction in blood sugar, serum glucose, α-amylase activity, α-glucosidase activity, and lipase activity. As the percentage of bitter gourd inclusion increased, the expression of GLUT-2 and insulin genes was upregulated. The beer sample with the lowest percentage inclusion of Hops (25:75BG) had the lowest glycemic index (GI). The study suggested that bitter gourd-flavored alcohol-free beer reduces blood glucose through muptiple pathways and could be a useful dietary intervention in the management of type 2 diabetes.
Tài liệu tham khảo
Adamenko, K., Kawa-Rygielska, J., & Kucharska, A. Z. (2020). Characteristics of Cornelian cherry sour non-alcoholic beers brewed with the special yeast Saccharomycodes ludwigii. Food Chemistry, 312, 125968.
Adenuga, W., Olaleye, O. N., & Adepoju, P. A. (2010). Utilization of bitter vegetable leaves (Gongronema latifolium, Vernonia amygdalina) and Garcinia kola extracts as substitutes for hops in sorghum beer production. African Journal of Biotechnology, 9(51), 8819–8823.
Akerele, G. P., Adedayo, B. C., Oboh, G., Ademosun, A. O., & Oyeleye, S. I. (2022). Glycemic indices and effect of bitter leaf (Vernonia amygdalina) flavored non-alcoholic wheat beer (NAWB) on key carbohydrate metabolizing enzymes in high fat diet fed (HFD)/STZ-induced diabetic Wistar rats. Journal of Food Biochemistry, 46(12), e14511.
Akerele, G. P., Oyeleye, S. I., Busari, M. G., & Oboh, G. (2021). Glycemic indices, possible antidiabetic potentials and phenolic contents of some indigenous Green Leafy Vegetables (GLVs): doi. org/10.26538/tjnpr/v5i3 . 30. Tropical Journal of Natural Product Research (TJNPR), 5(3), 597–602.
AL-Ishaq, R.K., Abotaleb, M., Kubatka P., Kajo K. and Büsselberg, D. (2019). Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9, 430. https://doi.org/10.3390/biom9090430
Al-Shaqha, W. M., Khan, M., Salam, N., Azzi, A., & Chaudhary, A. A. (2015). Anti-diabetic potential of Catharanthus roseus Linn. and its effect on the glucose transport gene (GLUT-2 and GLUT-4) in streptozotocin induced diabetic wistar rats. BMC Complementary and Alternative Medicine, 15(1), 1–8.
Apostolidis, E., Kwon, Y. I., & Shetty, K. (2007). Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innovative Food Science & Emerging Technologies, 8(1), 46–54.
Bell, K. J., Smart, C. E., Steil, G. M., Brand-Miller, J. C., King, B., & Wolpert, H. A. (2015). Impact of fat, protein, and glycemic index on postprandial glucose control in type 1 diabetes: Implications for intensive diabetes management in the continuous glucose monitoring era. Diabetes Care, 38(6), 1008–1015.
Cousens, G. (2008). There is a cure for diabetes: The tree of life 21 day program (pp. 191–192). North Atlantic Books.
Czech, M. P. (2017). Insulin action and resistance in obesity and type 2 diabetes. Nature Medicine, 23(7), 804–814.
Dona, A. C., Pages, G., Gilbert, R. G., & Kuchel, P. W. (2010). Digestion of starch: In vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydrate Polymers, 80(3), 599–617.
Dostálek, P., Karabín, M., & Jelínek, L. (2017). Hop phytochemicals and their potential role in metabolic syndrome prevention and therapy. Molecules, 22(10), 1761.
Eleazu, C. O. (2016). The concept of low glycemic index and glycemic load foods as panacea for type 2 diabetes mellitus; prospects, challenges and solutions. African Health Sciences, 16(2), 468–479.
Foster-Powell, K., Holt, S. H., & Brand-Miller, J. C. (2002). International table of glycemic index and glycemic load values: 2002. American Journal of Clinical Nutrition, 76(1), 5–56. https://doi.org/10.1093/ajcn/76.1.5. PMID: 12081815.
Gutch, M., Kumar, S., Razi, S. M., Gupta, K. K., & Gupta, A. (2015). Assessment of insulin sensitivity/resistance. Indian Journal of Endocrinology and Metabolism, 19(1), 160–4. https://doi.org/10.4103/2230-8210.146874
Hernández-Quiroz, F., Nirmalkar, K., Villalobos-Flores, L. E., Murugesan, S., Cruz-Narváez, Y., Rico-Arzate, E., & García-Mena, J. (2020). Influence of moderate beer consumption on human gut microbiota and its impact on fasting glucose and β-cell function. Alcohol, 85, 77–94.
Ignat, M. V., Salanță, L. C., Pop, O. L., Pop, C. R., Tofană, M., Mudura, E., & Pasqualone, A. (2020). Current functionality and potential improvements of non-alcoholic fermented cereal beverages. Foods, 9(8), 1031.
Joseph, B., & Jini, D. (2013). Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pacific Journal of Tropical Disease., 3(2), 93–102. https://doi.org/10.1016/S2222-1808(13)60052-3.PMCID:PMC4027280
Kazeem, M. I., Raimi, O. G., Balogun, R. M., & Ogundajo, A. L. (2013). Comparative study on the α-amylase and α-glucosidase inhibitory potential of different extracts of Blighia sapida Koenig. American Journal of Research Communication, 1(7), 178–192.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))Method. Methods (San Diego, Calif.), 25(4), 402–408.
Lucia, M. P., Cintia, M. R., Mario, D. B., & Guillermo, R. C. (2006). Catalytic properties of lipase extracts from Aspergillus niger. Food Technology and Biotechnology, 44, 247–252.
Malomo, O. (2015). The Nigeria beer story. International Journal of Current Microbiology and Applied Sciences, 4, 1037–1052.
Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412–419. https://doi.org/10.1007/BF00280883
Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Faso honey, as well as their radical scavenging activity. Food Chemistry., 91, 571–577.
Mellor, D. D., Hanna-Khalil, B., & Carson, R. (2020). A review of the potential health benefits of low alcohol and alcohol-free beer: Effects of ingredients and craft brewing processes on potentially bioactive metabolites. Beverages, 6(2), 25.
Nath, S., Ghosh, S. K., & Choudhury, Y. (2017). A murine model of type 2 diabetes mellitus developed using a combination of high fat diet and multiple low doses of streptozotocin treatment mimics the metabolic characteristics of type 2 diabetes mellitus in humans. Journal of Pharmacological and Toxicological Methods, 84, 20–30.
National Bureau of Staistics (2019). Amount Spent on Alcohol Consumption in Nigeria. https://www.premiumtimesng.com/health/health-features/334887-south-south-leads-nigerias-huge-alcohol-consumption-nbs-data. Accessed on 13 Mar 2023.
Oboh G., Akerele, G. P., Adedayo, B. C., & Ademiluyi, A. O. (2021). Comparative studies of the effects of five indigenous Cowpea (Vigna unguiculata) varieties on enzymes linked to type 2 diabetes and their glycemic indices: doi. org/10.26538/tjnpr/v5i5.28. Tropical Journal of Natural Product Research (TJNPR), 5(5), 970–976.
Oboh, G., & Ogunruku, O. O. (2010). Cyclophosphamide-induced oxidative stress in brain: protective effect of hot short pepper (Capsicum frutescens L. var. abbreviatum). Experimental and Toxicologic Pathology, 62(3), 227–233.
Ogilvy-Stuart, A. L., & Beardsall, K. (2020). Pathophysiology and management of disorders of carbohydrate metabolism and neonatal diabetes. In Maternal-fetal and neonatal endocrinology (pp. 783–803). Academic Press.
Olagoke, O. C., Afolabi, B. A., & Rocha, J. B. T. (2021). streptozotocin induces brain glucose metabolic changes and alters glucose transporter expression in the Lobster cockroach; Nauphoeta cinera (Blattodea: Blaberidae). Molecular and Cellular Biochemistry, 476, 1109–1121.
Park, J. H., Seo, I., Shim, H. M., & Cho, H. (2020). Melatonin ameliorates SGLT2 inhibitor-induced diabetic ketoacidosis by inhibiting lipolysis and hepatic ketogenesis in type 2 diabetic mice. Journal of Pineal Research, 68(2), e12623.
Pokrivčák, J., Supeková, S. C., Lančarič, D., Savov, R., Tóth, M., & Vašina, R. (2019). Development of beer industry and craft beer expansion. Journal of Food & Nutrition Research, 58(1).
Rahim, A. T. M. A., Takahashi, Y., & Yamaki, K. (2015). Mode of pancreatic lipase inhibition activity in vitro by some flavonoids and non-flavonoid polyphenols. Food Research International, 75, 289–294.
Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., & Williams, R. I. D. F. (2019). IDF Diabetes Atlas Committee Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Research and Clinical Practice, 157(107843), 10–1016.
Sahin, K., Onderci, M., Tuzcu, M., Ustundag, B., Cikim, G., Ozercan, İH., & Komorowski, J. R. (2007). Effect of chromium on carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus: the fat-fed, streptozotocin-treated rat. Metabolism, 56(9), 1233–1240.
Salanță, L. C., Coldea, T. E., Ignat, M. V., Pop, C. R., Tofană, M., Mudura, E., & Zhao, H. (2020). Non-alcoholic and craft beer production and challenges. Processes, 8(11), 1382.
Salanță, L. C., Coldea, T. E., Ignat, M. V., Pop, C. R., Tofană, M., Mudura, E., & Zhao, H. (2020). Functionality of special beer processes and potential health benefits. Processes, 8(12), 1613.
Saliu, J. A., Oyeleye, S. I., Olasehinde, T. A., & Oboh, G. (2019). Modulatory effects of stonebreaker (Phyllanthus amarus) and bitter gourd (Momordica charantia) on enzymes linked with cardiac function in heart tissue of doxorubicin-stressed rats. Drug and Chemical Toxicology. https://doi.org/10.1080/01480545.2019.1700271
Sharawy, M. H., El-Awady, M. S., Megahed, N., & Gameil, N. M. (2016). Attenuation of insulin resistance in rats by agmatine: Role of SREBP-1c, mTOR and GLUT-2. Naunyn-Schmiedeberg’s Archives of Pharmacology, 389(1), 45–56.
Sinaiko, A. R., & Caprio, S. (2012). Insulin resistance. Journal of Pediatrics, 161(1), 11–15. https://doi.org/10.1016/j.jpeds.2012.01.012
Singh, U., Singh, S., & Kochhar, A. (2012). Therapeutic potential of antidiabetic neutraceuticals. Phytopharmacol, 2(1), 144–169.
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology (Vol. 299, pp. 152–178). Academic press.
Srinivasan, K., & Ramarao, P. (2007). Animal model in type 2 diabetes research: An overview. Indian Journal of Medical Research, 125(3), 451.
Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C. L., & Ramarao, P. (2005). Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacological Research, 52(4), 313–320.
Szablewski, L. (2011). Glucose homeostasis–mechanism and defects. Diabetes-Damages and Treatments, 2.
Teng, H., & Chen, L. (2017). α-Glucosidase and α-amylase inhibitors from seed oil: A review of liposoluble substance to treat diabetes. Critical Reviews in Food Science and Nutrition, 57(16), 3438–3448.
Uloko, A. E., Musa, B. M., Ramalan, M. A., Gezawa, I. D., Puepet, F. H., Uloko, A. T., Borodo, M. M., & Sada, K. B. (2018). Prevalence and risk factors for diabetes mellitus in Nigeria: a systematic review and meta-analysis. Diabetes Therapy, 9(3), 1307–1316. https://doi.org/10.1007/s13300-018-0441-1
Wolever, T. M., Jenkins, D. J., Jenkins, A. L., & Josse, R. G. (1991). The glycemic index: Methodology and clinical implications. The American Journal of Clinical Nutrition, 54(5), 846–854.
Worthington Biochemical Corporation. (1993). Worthington, enzyme and related biochemicals. XIII World Congress of Cardiology, Freehold, NJ. Monduzzi Editore Sp. Ap. 421–425.
Yalta, A. T. (2008). The accuracy of statistical distributions in Microsoft® Excel 2007. Computational Statistics & Data Analysis, 52(10), 4579–4586.
Zapata, P. J., Martínez-Esplá, A., Gironés-Vilaplana, A., Santos-Lax, D., Noguera-Artiaga, L., & Carbonell-Barrachina, Á. A. (2019). Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. LWT, 103, 139–146.