Bipolar Effects in Photovoltage of Metamorphic InAs/InGaAs/GaAs Quantum Dot Heterostructures: Characterization and Design Solutions for Light-Sensitive Devices

Nanoscale Research Letters - Tập 12 - Trang 1-9 - 2017
Sergii Golovynskyi1,2, Luca Seravalli3, Oleksandr Datsenko4, Oleksii Kozak4, Serhiy V. Kondratenko4, Giovanna Trevisi3, Paola Frigeri3, Enos Gombia3, Sergii R. Lavoryk2, Iuliia Golovynska1, Tymish Y. Ohulchanskyy1, Junle Qu1
1College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, People’s Republic of China
2Institute of Semiconductor Physics, National Academy of Sciences, Kyiv, Ukraine
3Institute of Materials for Electronics and Magnetism, CNR-IMEM, Parma, Italy
4Department of Physics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Tóm tắt

The bipolar effect of GaAs substrate and nearby layers on photovoltage of vertical metamorphic InAs/InGaAs in comparison with pseudomorphic (conventional) InAs/GaAs quantum dot (QD) structures were studied. Both metamorphic and pseudomorphic structures were grown by molecular beam epitaxy, using bottom contacts at either the grown n +-buffers or the GaAs substrate. The features related to QDs, wetting layers, and buffers have been identified in the photoelectric spectra of both the buffer-contacted structures, whereas the spectra of substrate-contacted samples showed the additional onset attributed to EL2 defect centers. The substrate-contacted samples demonstrated bipolar photovoltage; this was suggested to take place as a result of the competition between components related to QDs and their cladding layers with the substrate-related defects and deepest grown layer. No direct substrate effects were found in the spectra of the buffer-contacted structures. However, a notable negative influence of the n +-GaAs buffer layer on the photovoltage and photoconductivity signal was observed in the InAs/InGaAs structure. Analyzing the obtained results and the performed calculations, we have been able to provide insights on the design of metamorphic QD structures, which can be useful for the development of novel efficient photonic devices.

Tài liệu tham khảo

Wu J, Chen SM, Seeds A, Liu HY (2015) Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. J Phys D Appl Phys 48:363001 Chen Z-S, Ma B, Shang X-J, Ni H-Q, Wang J-L, Niu Z-C (2017) Bright single-photon source at 1.3 μm based on InAs bilayer quantum dot in micropillar. Nanoscale Res Lett 12:378 Maximov MV, Kryzhanovskaya NV, Nadtochiy AM, Moiseev EI, Shostak II, Bogdanov AA et al (2014) Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots. Nanoscale Res Lett 9:657 Cho N, Choudhury KR, Thapa RB, Sahoo Y, Ohulchanskyy T, Cartwright AN et al (2007) Efficient photodetection at IR wavelengths by incorporation of PbSe-carbon-nanotube conjugates in a polymeric nanocomposite. Adv Mater 19:232 Choudhury KR, Sahoo Y, Ohulchanskyy TY, Prasad PN (2005) Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites. Appl Phys Lett 87:073110 Mi Z, Bhattacharya P (2008) Pseudomorphic and metamorphic quantum dot heterostructures for long-wavelength lasers on GaAs and Si (Invited paper). IEEE J Sel Top Quant 14:1171–1179 Munoz-Matutano G, Barrera D, Fernandez-Pousa CR, Chulia-Jordan R, Seravalli L, Trevisi G et al (2016) All-optical fiber Hanbury Brown & Twiss interferometer to study 1300 nm single photon emission of a metamorphic InAs quantum dot. Sci Rep-Uk 6:27214 Zhang JX, Wildmann JS, Ding F, Trotta R, Huo YH, Zallo E et al (2015) High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat Commun 6:10067 Kondratenko SV, Iliash SA, Vakulenko OV, Mazur YI, Benamara M, Marega E et al (2017) Photoconductivity relaxation mechanisms of InGaAs/GaAs quantum dot chain structures. Nanoscale Res Lett 12:183 Golovynskyi SL, Dacenko OI, Kondratenko SV, Lavoryk SR, Mazur YI, Wang ZM et al (2016) Intensity-dependent nonlinearity of the lateral photoconductivity in InGaAs/GaAs dot-chain structures. J Appl Phys 119:184303 Kim JO, Sengupta S, Barve AV, Sharma YD, Adhikary S, Lee SJ et al (2013) Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors. Appl Phys Lett 102:011131 Vaillancourt J, Stintz A, Meisner MJ, Lu XJ (2009) Low-bias, high-temperature operation of an InAs-InGaAs quantum-dot infrared photodetector with peak-detection wavelength of 11.7 μm. Infrared Phys Techn 52:22–24 Lu X, Meisner MJ, Vaillancourt J, Li J, Liu W, Qian X et al (2007) Modulation-doped InAs-InGaAs quantum dot longwave infrared photodetector with high quantum efficiency. Electron Lett 43:589–590 Kondratenko S, Yakovliev A, Iliash S, Mazur Y, Ware M, Lam P et al (2017) Influence of built-in charge on photogeneration and recombination processes in InAs/GaAs quantum dot solar cells. J Phys D Appl Phys 50:165101 Al Saqri NA, Felix JF, Aziz M, Kunets VP, Jameel D, Taylor D et al (2017) Investigation of electrically active defects in InGaAs quantum wire intermediate-band solar cells using deep-level transient spectroscopy technique. Nanotechnology 28:045707 Cedola A, Cappelluti F, Gioannini M (2016) Dependence of quantum dot photocurrent on the carrier escape nature in InAs/GaAs quantum dot solar cells. Semicond Sci Tech 31:025018 Luque A, Marti A (1997) Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys Rev Lett 78:5014–5017 Luque A, Marti A, Stanley C (2012) Understanding intermediate-band solar cells. Nat Photonics 6:146–152 Schaller RD, Agranovich VM, Klimov VI (2005) High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Nat Phys 1:189–194 Ezzedini M, Hidouri T, Alouane MHH, Sayari A, Shalaan E, Chauvin N et al (2017) Detecting spatially localized exciton in self-organized InAs/InGaAs quantum dot superlattices: a way to improve the photovoltaic efficiency. Nanoscale Res Lett 12:450 Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519 Tatebayashi J, Nuntawong N, Wong PS, Xin YC, Lester LF, Huffaker DL (2009) Strain compensation technique in self-assembled InAs/GaAs quantum dots for applications to photonic devices. J Phys D Appl Phys 42:073002 Gandhi JS, Kim CU, Kirk WP (2013) Misfit management for reduced dislocation formation in epitaxial quantum-dot-based devices. J Cryst Growth 364:169–177 Lam PM, Wu J, Hatch S, Kim D, Tang MC, Liu HY et al (2015) Effect of rapid thermal annealing on InAs/GaAs quantum dot solar cells. IET Optoelectron 9:65–68 Wang P, Chen QM, Wu XY, Cao CF, Wang SM, Gong Q (2016) Detailed study of the influence of InGaAs matrix on the strain reduction in the InAs dot-in-well structure. Nanoscale Res Lett 11:119 Polojarvi V, Schramm A, Aho A, Tukiainen A, Guina M (2012) Removal of strain relaxation induced defects by flushing of InAs quantum dots. J Phys D Appl Phys 45:365107 Balakrishnan G, Huang S, Rotter TJ, Stintz A, Dawson LR, Malloy KJ et al (2004) 2.0 μm wavelength InAs quantum dashes grown on a GaAs substrate using a metamorphic buffer layer. Appl Phys Lett 84:2058–2060 Semenova ES, Zhukov AE, Mikhrin SS, Egorov AY, Odnoblyudov VA, Vasil'ev AP et al (2004) Metamorphic growth for application in long-wavelength (1.3-1.55 μm) lasers and MODFET-type structures on GaAs substrates. Nanotechnology 15:S283–S2S7 Seravalli L, Minelli M, Frigeri P, Allegri P, Avanzini V, Franchi S (2003) The effect of strain on tuning of light emission energy of InAs/InGaAs quantum-dot nanostructures. Appl Phys Lett 82:2341–2343 Seravalli L, Frigeri P, Nasi L, Trevisi G, Bocchi C (2010) Metamorphic quantum dots: quite different nanostructures. J Appl Phys 108:064324 Seravalli L, Trevisi G, Frigeri P (2012) 2D-3D growth transition in metamorphic InAs/InGaAs quantum dots. CrystEngComm 14:1155–1160 Seravalli L, Trevisi G, Frigeri P (2012) Design and growth of metamorphic InAs/InGaAs quantum dots for single photon emission in the telecom window. CrystEngComm 14:6833–6838 Rimada JC, Prezioso M, Nasi L, Gombia E, Mosca R, Trevisi G et al (2009) Electrical and structural characterization of InAs/InGaAs quantum dot structures on GaAs. Mater Sci Eng B-Adv 165:111–114 Seravalli L, Frigeri P, Minelli M, Franchi S, Allegri P, Avanzini V (2006) Metamorphic self-assembled quantum dot nanostructures. Mat Sci Eng C-Bio S 26:731–734 Seravalli L, Bocchi C, Trevisi G, Frigeri P (2010) Properties of wetting layer states in low density InAs quantum dot nanostructures emitting at 1.3 μm: effects of InGaAs capping. J Appl Phys 108:114313 Seravalli L, Frigeri P, Trevisi G, Franchi S (2008) 1.59 μm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates. Appl Phys Lett 92:213104 Azeza B, Alouane MHH, Ilahi B, Patriarche G, Sfaxi L, Fouzri A et al (2015) Towards InAs/InGaAs/GaAs quantum dot solar cells directly grown on Si substrate. Materials 8:4544–4552 Rouis W, Haggui M, Rekaya S, Sfaxi L, M'ghaieth R, Maaref H et al (2016) Local photocurrent mapping of InAs/InGaAs/GaAs intermediate-band solar cells using scanning near-field optical microscopy. Sol Energ Mat Sol C 144:324–330 Han IS, Kim JS, Kim JO, Noh SK, Lee SJ (2016) Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure. Curr Appl Phys 16:587–592 Lee SH, Han IS, Sohn CW, Jo HJ, Kim JS, Lee SJ et al (2015) Investigation of the electrical and optical properties of InAs/InGaAs dot in a well solar cell. Curr Appl Phys 15:1318–1323 Eiwwongcharoen W, Nakareseisoon N, Thainoi S, Panyakeow S, Kanjanachuchai S (2016) Ultrathin epitaxial InAs layer relaxation on cross-hatch stress fields. CrystEngComm 18:5852–5859 Seravalli L, Gioannini M, Cappelluti F, Sacconi F, Trevisi G, Frigeri P (2016) Broadband light sources based on InAs/InGaAs metamorphic quantum dots. J Appl Phys 119:143102 Golovynskyi SL, Seravalli L, Trevisi G, Frigeri P, Gombia E, Dacenko OI et al (2015) Photoelectric properties of the metamorphic InAs/InGaAs quantum dot structure at room temperature. J Appl Phys 214312:117 Golovynskyi SL, Mazur YI, Wang ZM, Ware ME, Vakulenko OV, Tarasov GG et al (2014) Excitation intensity dependence of lateral photocurrent in InGaAs/GaAs dot-chain structures. Phys Lett A 378:2622–2626 Golovynskyi S, Seravalli L, Datsenko O, Trevisi G, Frigeri P, Gombia E et al (2017) Comparative study of photoelectric properties of metamorphic InAs/InGaAs and InAs/GaAs quantum dot structures. Nanoscale Res Lett 12:335 Trevisi G, Seravalli L, Frigeri P, Prezioso M, Rimada JC, Gombia E et al (2009) The effects of quantum dot coverage in InAs/(In)GaAs nanostructures for long wavelength emission. Microelectron J 40:465–468 Kordos P, Marso M, Meyer R, Luth H (1992) Schottky-Barrier height enhancement on n-In0.53Ga0.47As. J Appl Phys 72:2347–2355 Gombia E, Mosca R, Motta A, Chaabane H, Bosacchi A, Franchi S (1996) Quasi-Schottky contacts on n-In0.35Ga0.65As epitaxial layers deposited on GaAs substrates. Electron Lett 32:2283–2285 Averin SV, Kohl A, Muller R, Wisser J, Heime K (1993) Quasi-Schottky barrier MSM-diode on n-Ga0.47In0.53As using a depleted p+-Ga0.47In0.53As layer grown by LP-MOVPE. Solid State Electron 36:61–67 Auf der Maur M, Penazzi G, Romano G, Sacconi F, Pecchia A, Di Carlo A (2011) The multiscale paradigm in electronic device simulation. IEEE T Electron Dev 58:1425–1432 Trevisi G, Seravalli L, Frigeri P (2016) Photoluminescence monitoring of oxide formation and surface state passivation on InAs quantum dots exposed to water vapor. Nano Res 9:3018–3026 Seravalli L, Trevisi G, Frigeri P, Rivas D, Munoz-Matutano G, Suarez I et al (2011) Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates. Appl Phys Lett 173112:98 Seravalli L, Trevisi G, Frigeri P (2013) Calculation of metamorphic two-dimensional quantum energy system: application to wetting layer states in InAs/InGaAs metamorphic quantum dot nanostructures. J Appl Phys 114:184309 Nasi L, Bocchi C, Germini F, Prezioso M, Gombia E, Mosca R et al (2008) Defects in nanostructures with ripened InAs/GaAs quantum dots. J Mater Sci-Mater El 19:S96–S100 Vakulenko OV, Golovynskyi SL, Kondratenko SV (2011) Effect of carrier capture by deep levels on lateral photoconductivity of InGaAs/GaAs quantum dot structures. J Appl Phys 110:043717 Chu L, Zrenner A, Bichler M, Bohm G, Abstreiter G (2000) Raman spectroscopy of In(Ga)As/GaAs quantum dots. Appl Phys Lett 77:3944–3946 Kaminska M (1988) Optical properties of EL2. Rev Phys Appl 23:793–802 Donchev V, Ivanov T, Ivanova T, Mathews S, Kim JO, Krishna S (2015) Surface photovoltage spectroscopy study of InAs quantum dot in quantum well multilayer structures for infrared photodetectors. Superlattice Microst 88:711–722 Dai YS, Polly SJ, Hellstroem S, Slocum MA, Bittner ZS, Forbes DV et al (2017) Effect of electric field on carrier escape mechanisms in quantum dot intermediate band solar cells. J Appl Phys 121:013101 Flores YV, Aleksandrova A, Elagin M, Kischkat J, Kurlov SS, Monastyrskyi G et al (2015) Comparison of semi-insulating InAlAs and InP:Fe for InP-based buried-heterostructure QCLs. J Cryst Growth 425:360–363