Biotransformation of soy whey into a novel functional beverage by Cordyceps militaris SN-18

Yiqiang Dai1, Jing Zhou1, Lixia Wang2, Mingsheng Dong2, Xiufang Xia1
1Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People’s Republic of China
2College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, People’s Republic of China

Tóm tắt

Abstract Soy whey, a liquid nutritional by-product of soybean manufacture, is rich in proteins, oligosaccharides and isoflavones. Soy whey can be used to produce functional beverages, instead of discarding it as a waste. In this study, unfermented soy whey (USW) and Cordyceps militaris SN-18-fermented soy whey (FSW) were investigated and compared for their physicochemical and functional properties by high performance liquid chromatography (HPLC) and DNA damage assay. Results show that C. militaris SN-18 fermentation could increase the contents of essential amino acids, total phenolic and flavonoid and isoflavone aglycones and eliminate the oligosaccharides in soy whey. Furthermore, C. militaris SN-18 could significantly enhance the ABTS radical scavenging ability, reducing power and ferric reducing power of soy whey, and its fermented products could prominently attenuate Fenton reaction-induced DNA damage. These findings indicate that soy whey can potentially be converted into a novel soy functional beverage by C. militaris SN-18 fermentation. Graphical abstract

Từ khóa


Tài liệu tham khảo

Bei, Q., Liu, Y., Wang, L., Chen, G., & Wu, Z. (2017). Improving free, conjugated, and bound phenolic fractions in fermented oats (Avena sativa L.) with Monascus anka and their antioxidant activity. Journal of Functional Foods, 32, 185–194.

Chen, H., Liu, L. J., Zhu, J. J., Xu, B., & Li, R. (2010). Effect of soybean oligosaccharides on blood lipid, glucose levels and antioxidant enzymes activity in high fat rats. Food Chemistry, 119, 1633–1636.

Chua, J. Y., & Liu, S. Q. (2019). Soy whey: More than just wastewater from tofu and soy protein isolate industry. Trends in Food Science and Technology, 91, 24–32.

Chua, J. Y., Lu, Y., & Liu, S. Q. (2017). Biotransformation of soy whey into soy alcoholic beverage by four commercial strains of Saccharomyces cerevisiae. International Journal of Food Microbiology, 262, 14–22.

Geng, X., Yang, D., Zhang, Q., Chang, M., Xu, L., Cheng, Y., … Meng, J. (2020). Good hydrolysis activity on raffinose family oligosaccharides by a novel α-galactosidase from Tremella aurantialba. International Journal of Biological Macromolecules, 150, 1249–1257.

Han, B. Z., Rombouts, F. M., & Nout, M. J. R. (2004). Amino acid profiles of sufu, a Chinese fermented soybean food. Journal of Food Composition and Analysis, 17, 689–698.

Hsiao, Y. H., Ho, C. T., & Pan, M. H. (2020). Bioavailability and health benefits of major isoflavone aglycones and their metabolites. Journal of Functional Foods, 74, 104164.

Hu, R., Lin, L., Liu, T., Ouyang, P., He, B., & Liu, S. (2008). Reducing sugar content in hemicellulose hydrolysate by DNS method: A revisit. Journal of Biobased Materials and Bioenergy, 2, 156–161.

Kim, J., Hahn, K., Yoo, D., Jung, H., Hwang, I., Seong, J., & Yoon, Y. (2019). Methionine-choline deprivation impairs adult hippocampal neurogenesis in C57BL/6 mice. Journal of Medicinal Food, 22, 344–354.

Kumari, D. S., Panesar, P., & Panesar, R. (2011). Production of β-galactosidase using novel yeast isolate from whey. International Journal of Dairy Science, 6, 150–157.

Li, S., Jin, Z., Hu, D., Yang, W., Yan, Y., Nie, X., … Chen, X. (2020). Effect of solid-state fermentation with Lactobacillus casei on the nutritional value, isoflavones, phenolic acids and antioxidant activity of whole soybean flour. LWT - Food Science and Technology, 125, 109264.

Liu, W., Zhang, H., Wu, Z., Wang, Y., & Wang, L. (2013). Recovery of isoflavone aglycones from soy whey wastewater using foam fractionation and acidic hydrolysis. Journal of Agricultural and Food Chemistry, 60, 7366–7372.

Marazza, J. A., Nazareno, M. A., de Giori, G. S., & Garro, M. S. (2012). Enhancement of the antioxidant capacity of soymilk by fermentation with Lactobacillus rhamnosus. Journal of Functional Foods, 4, 594–601.

Park, J. P., Kim, S., Hwang, H. J., & Yun, J. W. (2001). Optimization of submerged culture conditions for the mycelia growth and exo-biopolymer production by Cordyceps militaris. Letters in Applied Microbiology, 33, 76–81.

Queiroz Santos, V. A., Nascimento, C. G., Schmidt, C. A. P., Mantovani, D., Dekker, R. F. H., & da Cunha, M. A. A. (2018). Solid-state fermentation of soybean okara: Isoflavones biotransformation, antioxidant activity and enhancement of nutritional quality. LWT - Food Science and Technology, 92, 509–515.

Reyes-Bastidas, M., Reyes-Fernández, E., López-Cervantes, J., Milán-Carrillo, J., & Reyes Moreno, C. (2010). Physicochemical, nutritional and antioxidant properties of tempeh flour from common bean (Phaseolus vulgaris L.). Food Science and Technology International, 16, 427–434.

Seo, K. H., Lee, J. Y., Debnath, T., Kim, Y. M., Park, J. Y., Kim, Y. O., … Lim, B. O. (2015). DNA protection and antioxidant potential of chestnut shell extracts. Journal of Food Biochemistry, 40, 20–30.

Singh, H. B., Singh, B. N., Singh, S. P., & Nautiyal, C. S. (2010). Solid-state cultivation of Trichoderma harzianum NBRI-1055 for modulating natural antioxidants in soybean seed matrix. Bioresource Technology, 101, 6444–6453.

Tian, B., & Hua, Y. (2005). Concentration-dependence of prooxidant and antioxidant effects of aloin and aloe-emodin on DNA. Food Chemistry, 91, 413–418.

Tu, C., Tang, S., Azi, F., Hu, W., & Dong, M. (2019). Use of kombucha consortium to transform soy whey into a novel functional beverage. Journal of Functional Foods, 52, 81–89.

Wang, L., Luo, Y., Wu, Y., Liu, Y., & Wu, Z. (2018). Fermentation and complex enzyme hydrolysis for improving the total soluble phenolic contents, flavonoid aglycones contents and bio-activities of guava leaves tea. Food Chemistry, 264, 189–198.

Wang, Y., Chen, P., & Zhang, B. (2014). Quantitative trait loci analysis of soluble sugar contents in soybean. Plant Breeding, 133, 493–498.

Wang, Y., & Serventi, L. (2019). Sustainability of dairy and soy processing: A review on wastewater recycling. Journal of Cleaner Production, 237, 117821.

Wang, Y. C., Yu, R. C., Yang, H. Y., & Chou, C. C. (2003). Sugar and acid contents in soymilk fermented with lactic acid bacteria alone or simultaneously with bifidobacteria. Food Microbiology, 20, 333–338.

Wu, H., Dong, J. J., Dai, Y. Q., Liu, X. L., Zhou, J. Z., & Xia, X. D. (2021). Effects of lactic acid bacteria fermented yellow whey on the protein coagulation and isoflavones distribution in soymilk. Food Chemistry, 334, 127484.

Wu, V., Dana, C., Iavarone, A., Clark, D., & Glass, N. (2017). Identification of glutaminyl cyclase genes involved in pyroglutamate modification of fungal lignocellulolytic enzymes. mBio, 8, e02231–e02216.

Xia, X., Dai, Y., Wu, H., Liu, X., Wang, Y., Yin, L., … Zhou, J. (2019). Kombucha fermentation enhances the health-promoting properties of soymilk beverage. Journal of Functional Foods, 62, 103549.

Xiao, Y., Wang, L., Rui, X., Li, W., Chen, X., Jiang, M., & Dong, M. (2015). Enhancement of the an-tioxidant capacity of soy whey by fermentation with Lactobacillus plantarum B1–6. Journal of Functional Foods, 12, 33–44.

Xiao, Y., Xing, G., Rui, X., Li, W., Chen, X., Jiang, M., & Dong, M. (2015). Effect of solid-state fermentation with Cordyceps militaris SN-18 on physicochemical and functional properties of chickpea (Cicer arietinum L.) flour. LWT - Food Science and Technology, 63, 1317–1324.

Xiao, Y., Zhang, B., Chen, Y., Miao, J., Zhang, Q., Rui, X., & Dong, M. (2016). Solid-state bioprocessing with Cordyceps militaris enhanced antioxidant activity and DNA damage protection of red bean (Phaseolus angularis). Cereal Chemistry, 94, 177–184.

Zhao, D., & Shah, N. P. (2014). Changes in antioxidant capacity, isoflavone profile, phenolic and vitamin contents in soymilk during extended fermentation. LWT - Food Science and Technology, 58, 454–462.

Zhou, J., Li, P., Cheng, N., Gao, H., Wang, B., Wei, Y., & Wei, C. (2012). Protective effects of buckwheat honey on DNA damage induced by hydroxyl radicals. Food and Chemical Toxicology, 50, 2766–2773.

Zhu, Y., Yang, Y., Zhou, Z., Li, G., Jiang, M., Zhang, C., & Chen, S. (2010). Direct determination of free tryptophan contents in soy sauces and its application as an index of soy sauce adulteration. Food Chemistry, 118, 159–162.