Các Ứng Dụng Công Nghệ Sinh Học của Probiotics: Một Vũ Khí Đa Dạng Chống Lại Bệnh Tật và Rối Loạn Chuyển Hóa

Probiotics and Antimicrobial Proteins - Tập 14 - Trang 1184-1210 - 2022
Rajnish Prakash Singh1, Afreen Shadan2, Ying Ma3
1Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
2Dr. Shyama Prasad Mukherjee University, Ranchi, India
3College of Resource and Environment, Southwest University, Chongqing, China

Tóm tắt

Việc tiêu thụ các vi sinh vật sống "Probiotics" nhằm cải thiện sức khỏe và sự an lạc đang gia tăng trên toàn cầu. Việc sử dụng chúng như một phương pháp điều trị để mang lại lợi ích cho sức khỏe đã làm cho con người say mê trong nhiều thế kỷ; tuy nhiên, khái niệm này dần dần phát triển cùng với sự tiến bộ về phương pháp, từ đó cải thiện hiểu biết của chúng ta về sự tương tác giữa probiotics và vật chủ. Tuy nhiên, mối quan ngại ngày càng tăng về các khía cạnh an toàn của vi sinh vật sống đang làm gia tăng mối quan tâm đối với các chế phẩm không sống hoặc chiết xuất tế bào vi sinh, vì chúng có thể giảm thiểu nguy cơ dịch chuyển và nhiễm trùng của vi sinh vật. Do những hạn chế kỹ thuật trong sản xuất và công thức của các probiotics được sử dụng truyền thống, cộng đồng khoa học đã tập trung vào việc khám phá các vi sinh vật mới để sử dụng làm probiotics. Trong nhiều nghiên cứu khoa học, probiotics đã được chứng minh là công cụ tiềm năng để điều trị các rối loạn chuyển hóa như béo phì, tiểu đường type-2, bệnh gan nhiễm mỡ không do rượu, các rối loạn tiêu hóa (ví dụ: tiêu chảy cấp tính và tiêu chảy liên quan đến kháng sinh), và các rối loạn dị ứng (ví dụ: bệnh chàm) ở trẻ em. Tuy nhiên, cái nhìn cơ chế về hành động cụ thể của dòng probiotics vẫn còn chưa được biết đến. Trong bài đánh giá hiện tại, chúng tôi đã phân tích tình trạng khoa học tiên tiến liên quan đến cơ chế hành động của probiotics, tác động sinh lý và điều hòa miễn dịch của chúng đối với vật chủ, và hướng phát triển mới trong việc phát triển probiotics thế hệ tiếp theo. Chúng tôi thảo luận về việc sử dụng các công cụ di truyền mới được phát hiện gần đây và ứng dụng của chúng trong việc thiết kế các vi khuẩn probiotics cho nhiều ứng dụng khác nhau bao gồm thực phẩm, ứng dụng y sinh và các lợi ích sức khỏe khác. Cuối cùng, bài đánh giá đề cập đến sự phát triển trong tương lai của các kỹ thuật sinh học kết hợp với các nghiên cứu lâm sàng và tiền lâm sàng nhằm giải thích cơ chế phân tử của hành động, và khám phá một loài vi khuẩn probiotics đa chức năng lý tưởng.

Từ khóa

#Probiotics #vi sinh vật sống #sức khỏe #rối loạn chuyển hóa #điều hòa miễn dịch #ứng dụng sinh học

Tài liệu tham khảo

Metchnikoff E (1908) The prolongation of life: optimistic studies. Putnam’s Sons, New York Lilly DM, Stillwell RH (1965) Probiotics: growth promoting factors produced by microorganisms. Science 147:747–748 Cani PD, Van Hul M (2015) Novel opportunities for next-generation probiotics targeting metabolic syndrome. Curr Opin Biotechnol 32:21–27 Chang CS, Kao CY (2019) Current understanding of the gut microbiota shaping mechanisms. J Biomed Sci 26:59 Hill C et al (2014) Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514 Plaza-Diaz J, Robles-Sanchez C, Abadia-Molina F, Saez-Lara MJ, Vilchez-Padial LM, Gil A, Gomez-Llorente C, Fontana L (2017) Gene expression profiling in the intestinal mucosa of obese rats administered probiotic bacteria. Sci Data 4:170186 Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A (2018) Immune-mediated mechanisms of action of probiotics and synbiotics in treating pediatric intestinal diseases. Nutrients 10(1):42 El Hage R, Hernandez-Sanabria E, Van de Wiele T (2017) Emerging trends in “smart probiotics”: functional consideration for the development of novel health and industrial applications. Front Microbiol 8:1889 Collins JK (1998) Thornton G, Sullivan GO: Selection of probiotic strains for human application. Int Dairy J8:487–490 Gueimonde M, Sánchez B (2012) Enhancing probiotic stability in industrial processes. Microb Ecol Health Dis. https://doi.org/10.3402/mehd.v23i0.18562 Siong TE, Hardinsyah and Sook Sum CA, (2021) Status of probiotic regulations in Southeast Asia countries. Mal J Nutr 27(3):507–530 Timmerman HM, Koning CJM, Mulder L, Rombouts FM, Beynen AC (2004) Mono strain, multi strain and multispecies probiotics—a comparison of functionality and efficacy. Int J Food Microbiol 96:219–233 Chapman C, Gibson G, Rowland I (2011) Health benefits of probiotics: are mixtures more effective than single strains? Eur J Nutr 50:1–17 Asemi Z, Zare Z, Shakeri H, Sabihi SS, Esmaillzadeh A (2013) Effect of multispecies probiotic supplements on metabolic profiles, Hs-CRP, and oxidative stress in patients with Type 2 diabetes. Ann Nutr Metab 6:1–9 Besseling-van der Vaart I, Heath MD, Guagnini F, Kramer MF (2016) In vitro evidence for efficacy in food intolerance for the multispecies probiotic formulation Ecologic R Tolerance (Syngut TM). Benef Microbes 7:111–118 Lye HS, Kuan CY, Ewe JA et al (2009) The improvement of hypertension by probiotics: effects on cholesterol, diabetes, renin, and phytoestrogens. Int J Mol Sci 10:3755–3775 Moayyedi P, Ford AC, Talley NJ et al (2010) The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut 59:325–332 Golowczyc MA, Mobili P, Garrote GL et al (2007) Protective action of Lactobacillus kefir carryingS-layer protein against Salmonella enteric serovar enteritidis. Int J Food Microbiol 118:264–273 Woodard GA, Encarnacion B, Downey JR et al (2009) Probiotics improve outcomes after Rouxen-Y gastric bypass surgery: a prospective randomized trial. J Gastrointest Surg 13:1198–1204 Rather IA, Bajpai VK, Kumar S, Lim J, Paek WK, Park YH (2016) Probiotics and atopic dermatitis: an overview. Front Microbiol 7:507 Karska-Wysocki B, Bazo M, Smoragiewicz W (2010) Antibacterial activity of Lactobacillus acidophilus and Lactobacillus case against methicillin-resistant Staphylococcus aureus (MRSA). Microbiol Res 165:674–686 Rafter J, Bennett M, Caderni G et al (2007) Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr 85:488–496 Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O (2016) Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med 8:1–11 Patrice DC (2018) Human gut microbiome: hopes, threats and promises. Gut 67:1716–1725 Conlon M, Bird A (2015) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7:17–44 Langella P, Martín R (2019) Emerging health concepts in the probiotics field: streamlining the definitions. Front Microbiol 10:1047 Kurtz CB, Millet YA, Puurunen MK, Perreault M, Charbonneau MR, Isabella VM, Kotula JW, Antipov E, Dagon Y, Denney WS (2019) An engineered E.coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med 117975 Certain LK, Way JC, Pezone MJ, Collins JJ (2017) Using engineered bacteria to characterize infection dynamics and antibiotic effects in vivo. Cell Host Microbe 22:263–268 Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL (2018) An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557(7705):434–438 Santiago-Rodriguez TM, Hollister EB (2019) Human virome and disease: high-throughput sequencing for virus discovery, identification of phage-bacteria dysbiosis and development of therapeutic approaches with emphasis on the human gut. Viruses 11:7 Duan FF, Liu JH, March JC (2015) Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes 641:794–803 Bäumler AJ, Sperandio V (2016) Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535:85–93 Ludwig IS, Broere F, Manurung S, Lambers TT, Vander Zee R, Eden WV (2018) Lactobacillus rhamnosus GG-derived soluble mediators modulate adaptive immune cells. Front Immunol. https://doi.org/10.3389/fimmu.2018.01546 Botes M, Loos B, Van Reenen CA, Dicks LM (2008) Adhesion of the probiotic strains Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 to Caco-2 cells under conditions simulating the intestinal tract, and in the presence of antibiotics and anti-inflammatory medicaments. Arch Microbiol 190:573–584 Gharbi Y, FhoulaI R-M, Afef N, Boudabous A, Gueimonde M, Ouzari HI (2019) In-vitro characterization of potentially probiotic Lactobacillus strains isolated from human microbiota: interaction with pathogenic bacteria and the enteric cell line HT29. Annals Microbiol 69:61–72 Benjamin C, Hofeld BC, Puppala VK, Tyagi S, Ahn KW, Anger A, Jia S, Salzman NH, Hessner MJ, Widlansky ME (2021) Lactobacillus plantarum 299v probiotic supplementation in men with stable coronary artery disease suppresses systemic inflammation. Sci Rep 11:3972 Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, Vezza T, Utrilla MP, Chueca N, Fernández-Caballero JA, Garcia F, Rodríguez-Cabezas ME, Galvez J (2018) The Administration of Escherichia coli Nissle 1917 ameliorates development of DSS-induced colitis in Mice. Front Pharmacol. https://doi.org/10.3389/fphar.2018.00468 Al-Balawi M, Morsy FM (2020) Enterococcus faecalis is a better competitor than other lactic acid bacteria in the initial colonization of colon of healthy new-born babies at first week of their life. Front Microbiol. https://doi.org/10.3389/fmicb.2020.02017 Hawrelak J (2003) Probiotics: choosing the right one for your needs. J Aust Traditional-Med Soc 9(2):67–75 Giralt J, Regadera JP, Verges R, Romero J, de la Fuente I, Biete A, Villoria J, Cobo JM, Guarner F (2008) Effects of probiotic Lactobacillus casei DN-114 001 in prevention of radiation-induced diarrhea: results from multicentre, randomized, placebo-controlled nutritional trial. Int J Radiat Oncol Biol Phys 71:1213–1219 Marras L, Caputo M, Bisicchia S, Soato M, Bertolino G, Vaccaro S, Inturr R (2021) The role of Bifidobacteria in predictive and preventive medicine: a focus on eczema and hypercholesterolemia. Microorganisms 9:836 Navarro-López V, Ramírez-Boscá A, Ramón-Vidal D, Ruzafa-Costas B, Genovés-Martínez S, Chenoll-Cuadros E, Carrión-Gutiérrez M, Parte JH, Prieto-Merino D, Codoñer-Cortés FM (2018) Effect of oral administration of a mixture of probiotic strains on SCORAD index and use of topical steroids in young patients with moderate atopic dermatitis A randomized clinical trial. JAMA Dermatol 154(1):37–43 Sestito S, D’Auria E, Baldassarre ME, Salvatore S, Tallarico V, Stefanelli E, Tarsitano F, Concolino D, Pensabene L (2020) The role of prebiotics and probiotics in prevention of allergic diseases in infants. Front Pediatr 22(8):583946 Hill D, Sugrue I, Tobin C, Hill C, Stanton C, Ross RP (2018) The Lactobacillus casei group: history and health-related applications. Front Microbiol 9:2107 Miremadi F, Sherkat F, Stojanovska L (2016) Hypocholesterolaemic effect and anti-hypertensive properties of probiotics and prebiotics: A review. J Fun Foods 25:497–510 An M, Park YH, Lim YH (2021) Ant obesity and antidiabetic effects of the dairy bacterium Propionibacterium freudenreichii MJ2 in high-fat diet-induced obese mice by modulating lipid metabolism. Sci Rep 11:2481 Schreck BA, Gregory PJ, Jalloh MA, Risoldi CZ, Hein DJ (2017) Probiotics for the treatment infantile colic: a systematic review. J Pharm Pract 30:366–374 Teixeira LD, Kling DN, Lorca GL, Gonzalez CF (2018) Lactobacillus johnsonii N6.2 diminishes caspase-1 maturation in the gastrointestinal system of diabetes prone rats. Benef Microbes 9:527–539 Brenner DM, Chey WD (2009) Bifidobacterium infantis 35624: a novel probiotic for the treatment of irritable bowel syndrome. Rev Gastroenterol Disord 9:7–15 Guglielmetti S, Mora D, Gschwender M, PoppK, (2011) Randomised clinical trial: Bifidobacterium bifidum MIMBb75 significantly alleviates irritable bowel syndrome and improves quality of life–a double-blind, placebo-controlled study. Alim Pharmacol Therapeu 33:1123–1132 Enck P, Zimmermann K, Menke G, Klosterhalfen S (2009) Randomized controlled treatment trial of irritable bowel syndrome with a probiotic E. coli preparation (DSM17252) compared to placebo. J Gastroenterol 47:209–214 Cayzeele-Decherf A, Pelerin F, Leuillet S et al (2017) Saccharomyces cerevisiae CNCM I-3856 in irritable bowel syndrome: an individual subject meta-analysis. World J Gastroenterol 23:336–344 Masoumi SJ, Mehrabani D, Saberifiroozi M, Fattahi MR, MoradiF NM (2020) The effect of yogurt fortified with Lactobacillus acidophilus and Bifidobacterium sp. probiotic in patients with lactose intolerance. Food Sci Nutr 9:1704–1711 Pineton de Chambrun G, Neut C, Chau A, Cazaubiel M, Pelerin F, Justen P, Pierre Desreumaux P (2015) A randomized clinical trial of Saccharomyces cerevisiae versus placebo in the irritable bowel syndrome. Dig Liver Dis 47(2):119–124 Khoder G, Al-Menhali AA, Al-Yassir F, Karam SM (2016) Potential role of probiotics in the management of gastric ulcer. Exp Ther Med 12(1):3–17 Anukam KC, Hayes K, Summers K, Reid G (2009) Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14may help downregulate TNF-Alpha, IL-6, IL-8, IL-10 and IL-12(p70) in the neurogenic bladder of spinal cord injured patient with urinary tract infections: a two-case study. Adv Urol 2009:680363 Imaoka A, Shima T, Kato K, Mizuno S, Uehara T, Matsumoto S, Setoyama H, Hara T, Umesaki Y (2008) Anti-inflammatory activity of probiotic Bifidobacterium: enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition ofIL-8 secretion in HT-29 cells. World J Gastroenterol 14:2511–2516 Srutkova D, Schwarzer M, Hudcovic T, Zakostelska Z, Drab V, Spanova A, Rittich B, Kozakova H, Schabussova I (2015) Bifidobacterium longum CCM 7952 promotes epithelial barrier function and prevents acute DSS-induced colitis in strictly strain-specific manner. PLoS ONE. https://doi.org/10.1371/journal.pone.0134050 Oerlemans EFM, Bellen G, Ingmar Claes I, Henkens T, Allonsius CN, Wittouck S, Van den Broek MFL, Wuyts S, Kiekens F, Gilbert GG, Donders GGG, Sarah Lebeer S (2020) Impact of a Lactobacilli-containing gel on vulvovaginal candidiasis and the vaginal microbiome. Sci Rep 10:7976 Saxami G, Karapetsas A, Lamprianidou E, Kotsianidis I, Chlichlia A, Tassou C, Zoumpourliset V, Galanis A (2016) Two potential probiotic lactobacillus strains isolated from olive microbiota exhibit adhesion and anti-proliferative effects in cancer cell lines. J Funct Foods 24:461–471 Tiptiri-Kourpeti A, Spyridopoulou K, Santarmaki V, Aindelis G, Tompoulidou E, Lampranidou E, Saxami G, Ypsilantis P, Lampri E, Simopoulos C et al (2016) Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS ONE 11:e0147960 Lee NK, Son SH, Jeon EB, Jung GH, Lee JY, Paik HD (2015) The prophylactic effect of probiotic Bacillus polyfermenticus KU3 against cancer cells. J Funct Foods 14:513–518 Thirabunyanon M, Boonprasom P, Niamsup P (2009) Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol Lett 31:571–576 Lee JW, Shin JG, Kim EH, Kang HE, Yim IB, Kim JY, Joo HG, Woo HJ (2004) Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J Vet Sci 5:41–48 Rasouli BS, Ghadimi-Darsajini A, Nekouian R, Iragian GR (2017) In vitro activity of probiotic Lactobacillus reuteri against gastric cancer progression by downregulation of urokinase plasminogen activator/urokinase plasminogen activator receptor gene expression. J Cancer Res Ther 13:246–251 Ghoneum M, Felo N (2015) Selective induction of apoptosis in human gastric cancer cells by Lactobacillus kefiri (PFT), a novel kefir product. Oncol Rep 34:1659–1666 Ohigashi S, Hoshino Y, Ohde S, Onodera H (2011) Functional outcome, quality of life, and efficacy of probiotics in postoperative patients with colorectal cancer. Surg Today 41:1200–1206 El-Nezami HS, Polychronaki NN, Ma J, Zhu H, Ling W, Salminen EK, Juvonen RO, Salminen SJ, Poussa T, Mykkänen HM (2006) Probiotic supplementation reduces a biomarker for increased risk of liver cancer in young men from Southern China. Am J Clin Nutr 83:1199–1203 Pala V, Sieri S, Berrino F, Vineis P, Sacerdote C, Palli D, Masala G, Panico S, Mattiello A, Tumino R (2011) Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohort. Int J Cancer 129:2712–2719 Ohashi Y, Nakai S, Tsukamoto T (2002) Habitual intake of lactic acid bacteria and risk reduction of bladder cancer. Urol Int 68:273–280 Ma EL, Choi YJ, Choi J, Pothoulakis C, Rhee SH, Imet E (2010) The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int J Cancer 127:780–790 Thomas CM, Versalovic J (2010) Probiotics–host communication: modulation of signalling pathways in the intestine. Gut Microbes 1:148–163 Fukushima Y, Kawata Y, Hara H, Terada A, Mitsuoka T (1998) Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children. Int J Food Microbiol 42:39–44 Galdeano CM, Perdigón G (2006) The probiotic bacterium Lactobacillus case induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol 13:219–226 Kobyliak N, Conte C, Cammarota G, Haley AP, Styriak I, Gaspar L et al (2016) Probiotics in prevention and treatment of obesity: a critical view. Nutr Metab 13:1–13 Nguyen HT, Truong DH, Kouhounde S, Ly S, Raza findralambo H, Delvigne F, (2016) Biochemical engineering approaches for increasing viability and functionality of probiotic bacteria. Int J Mol Sci 17:1–18 Westermann C, Gleinser M, Corr SC, Riedel CU (2016) A critical evaluation of Bifidobacterial adhesion to the host tissue. Front Microbiol 7:1–8 Onyenweaku F, Obeagu EI, Ifediora AC, Nwandikor UU (2016) Health benefits of probiotics. Int J InnovAppl Res 4:21–30 Dixit Y, Wagle A, Vakil B (2016) Patents in the field of probiotics, prebiotics, synbiotics: a review. J Food Microbiol Saf Hygiene 1:1–13 Chen CY, Tsen HY, Lin CL, Yu B, Chen CS (2012) Oral administration of a combination of select lactic acid bacteria strains to reduce the Salmonella invasion and inflammation of broiler chicks. Poult Sci 91:2139–2147 Chen X, Yang G, Song JH, Xu H, Li D, Goldsmith J et al (2013) Probiotic yeast inhibits VEGFR signalling and angiogenesis in intestinal inflammation. PLoS ONE 8:1–7 Arora T, Singh S, Sharma RK (2013) Probiotics: interaction with gut microbiome and anti obesity potential. Nutrition 29:591–596 Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788 Corr SC, Li Y et al (2007) Bacteriocin production as a mechanism for the anti-infective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci USA 104:7617–7621 Medellin-Peña MJ, Wang H, Johnson R, Anand S, Griffiths MW (2007) Probiotics affect virulence-related gene expression in Escherichia coliO157:H7. Appl Environ Microbiol 73:4259–4267 Kim Y, Kim SH, Whang KY, Kim YJ, Oh S (2008) Inhibition of Escherichia coli O157:H7 attachment by interactions between lactic acid bacteria and intestinal epithelial cells. J Microbiol Biotechnol 18:1278–1285 Li J, Wang W, Xu SX, Magarvey NA, McCormick JK (2011) Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proc Natl Acad Sci USA 108:3360–3365 Ohland CL, Macnaughton WK (2010) Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 298:G807–G819 Miyamoto J et al (2015) A gut microbial metabolite of linoleic acid, 10-hydroxycis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40–MEK–ERK pathway. J Biol Chem 290:2902–2918 Yamada M et al (2018) A bacterial metabolite ameliorates periodontal pathogen-induced gingival epithelial barrier disruption via GPR40 signaling. Sci Rep 8:9008 Joyce SA et al (2014) Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci USA 111:7421–7426 Sarkar A et al (2016) Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends Neurosci 39:763–781 Bravo JA et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108:16050–16055 Buffington SA et al (2016) Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165:1762–1775 Aires J, Butel MJ (2011) Proteomics, human gut microbiota and probiotics. Expert Rev Prot 8:279–288 Whitehead K, Versalovic J, Roos S, Britton RA (2008) Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol 74:1812–1819 Ruiz L, Ruas-Madiedo P, Gueimonde M, de Los Reyes-Gavila´n CG, Margolles A, Sa´ nchez B, (2011) How do bifidobacteriacounteract environmental challenges? Mechanisms involved and physiological consequences. Genes Nutr 6:307–318 Koskenniemi K, Laakso K, Koponen J, Kankainen M, Greco D, Auvinen P, SavijokiK NTA, Surakka A, Salusjarvi T et al (2011) Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Mol Cell Proteomics 10(M110):002741 Sanchez B, Champomier-Verge MC, Stuer-Lauridsen B, Ruas-Madiedo P, Anglade P, Baraige F, de los Reyes-Gavila CG, Johansen E, Zagorec M, Margolles A, (2007) Adaptation and response of Bifidobacterium animalis subsp. lactis to bile: a proteomic and physiological approach. Appl Environ Microbiol 73:6757–6767 Hamon E, Horvatovich P, Izquierdo E, BringelF ME, Aoude-Werner D, Ennahar S (2011) Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance. BMC Microbiol 11:63 Beck HC, Feddersen S, Petersen J (2011) Application of probiotic proteomics in enteric cytoprotection. In: Probiotic Bacteriaand Enteric Infections. MalagoJF, Koniks JG, Marinsek-Logov R (Eds.) Springer Science + Business Media B.V Dodrecht The Netherlands pp 155–168 Lebeer S, Vanderleyden J, De Keersmaecker SC (2010) Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8:171–184 Izquierdo E, Horvatovich P, Marchioni E, Aoude-Werner D, Sanz Y, Ennahar S (2009) 2-DE and MS analysis of key proteins in the adhesion of Lactobacillus plantarum, a first step toward early selection of probiotics based on bacterial biomarkers. Electrophoresis 30:949–956 Ashida N, Yanagihara S, Shinoda T, Yamamoto N (2011) Characterization of adhesive molecule with affinity to Caco-2cells in Lactobacillus acidophilus by proteome analysis. J Biosci Bioeng 112:333–337 Beganovic J, Frece J, Kos B, Lebos Pavunc A, Habjanic K, Suskovic J (2011) Functionality of the S-layer protein from the probiotic strain Lactobacillus helveticus M92. Antonie Van Leeuwenhoek 100:43–53 Konstantinov SR, Smidt H, de Vos WM, Bruijns SC, Singh SK, Valence F, Molle D, Lortal S, Altermann E, Klaenhammer TR, VanKooyk Y (2008) S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci USA 105:19474–19479 Candela M, Centanni M, Fiori J, Biagi E, Turroni S, Orrico C, Bergmann S, Hammerschmidt S, Brigidi P (2010) DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts. Microbiology 156:1609–1618 Ruiz L, CouteY SB, de los Reyes-Gavila CG, Sanchez JC, Margolles A, (2009) The cell-envelope proteome of bifidobacterium longum in an in vitro bile environment. Microbiology 155:957–967 Lee J, Choe J, Kim J, Oh S, Park S, Kim S et al (2015) Heat-killed Lactobacillus spp. cells enhance survivals of Caenorhabditis elegans against Salmonella and Yersinia infections. Lett Appl Microbiol 61:523–530 Sharma K, Pooranachithra M, Balamurugan K, Goel G (2019) Probiotic mediated colonization resistance against E.coli infection in experimentally challenged Caenorhabditis elegans. Microb Pathog 127:39–47 Poupet C, Saraoui T, Veisseire P, Bonnet M, Dausset C, Gachinat M et al (2019) Lactobacillus rhamnosus Lcr35 as an effective treatment for preventing Candida albicans infection in the invertebrate model Caenorhabditis elegans: first mechanistic insights. PLoS ONE 14:e0216184 Wang S, Ahmadi S, Nagpal R, Jain S, Mishra SP, Kavanagh K et al (2019) Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3–5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: from C. elegans to mice. Geroscience 42:333–524 Mooijaart SP, Brandt BW, Baldal EA, Pijpe J, Kuningas M, Beekman M et al (2005) C. elegans DAF-12, nuclear hormone receptors and human longevity and disease at old age. Ageing Res Rev 4:351–371 Sun S, Mizuno Y, Komura T, Nishikawa Y, Kage-Nakadai E (2019) Toll-like receptor homolog TOL-1 regulates Bifidobacterium infantis-elicited longevity and behavior in Caenorhabditis elegans. Biosci Microbiota Food Heal 38:105–110 Kodali VP, Lingala VK, Karlapudi AP, Indira M, Venkateswarulu TC, John Babu D (2013) Biosynthesis and potential application of bacteriocins. J Pure Appl Microbiol 7:2933–2945 Rossi M, Amaretti A, Raimondi S (2011) Folate Production by probiotic bacteria. Nutrients 3:118–134 Patel A, Shah N, Prajapati JB (2013) Biosynthesis of vitamins and enzymes in fermented foods by lactic acid bacteria and related genera: a promising approach. Croatian J Food Sci Technol 5:85–91 Dai Z, Wu Z, Hang S, Zhu W, Wu G (2015) Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. MHR Basic Sci Reprod Med 21:389–409 Indira M, Venkateswarulu TC, Peele KA, Prabhakar KV, Krupanidhi S (2019) Characterization of bacteriocin producing probiotic properties of Enterococcus casseliflavus MI001 isolated from curd sample. Curr Trends Biotechnol Pharm 13:64–71 Geirnaert A, Calatayud M, Grootaert C, Laukens D, Devriese S, Smagghe G, De Vos M, Boon N, Van de Wiele T (2017) Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci Rep 7:11450 LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P (2017) Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensaland probiotic bacteria. Microb Cell Fact 16:79 Gu Q, Li P (2016) Biosynthesis of vitamins by probiotic bacteria, probioticsand prebiotics in human nutrition and health, vol Chapterb7. In tech open, London, pp 135–148 Padmavathi T, Bhargavi R, Priyanka PR, Niranjan NR, Pavitra PV (2018) Screening of potential probiotic lactic acid bacteria and production of amylase and its partial purification. J Genet Eng Biotechnol 16:357–362 Anwar MA, Kralj S, Pique AV, Leemhuis H, van der Maarel MJ, Dijkhuizen L (2010) Inulin and levan synthesis by probiotic Lactobacillus gasseri strains: characterization of three novel fructansucrase enzymes and their fructan products. Microbiology 156(4):1264–1274 Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, Wang Y, Li W (2017) Antioxidant properties of probiotic bacteria. Nutrients 9:521 Cardenas N, Laino JE, Delgado S, Jimenez E, Del Valle MJ, De Giori GS, Sesma F, Mayo B, Fernandez L, LeBlanc JG, Rodriguez JM (2015) Relationships between the genome and some phenotypical properties of Lactobacillus fermentum CECT 5716, a probiotics train isolated from human milk. Appl Microbiol Biotechnol 99:4343–4353 Santos F, Wegkamp A, de Vos WM, Smid EJ, Hugenholtz J (2008) High-level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112. Appl Environ Microbiol 74:3291–3294 Vorobjeva LI, Khodjaev EY, Vorobjeva NV (2008) Propionic acid bacteria as probiotics. Microb Ecol Health Dis 20:109–112 Indira M, Venkateswarulu TC, Prabhakar KV, Peele KA, Krupanidhi S (2018) Isolation and characterization of bacteriocin producing Enterococcus casseliflavus and its antagonistic effect on Pseudomonas aeruginosa. Karbala Int J Mod Sci 4:361–368 Caly DL, Chevalier M, Flahaut C, Cudennec B, Al Atya AK, Chataigné G et al (2017) The safe enterocin DD14 is a leaderless two-peptide bacteriocin with anti-Clostridium perfringens activity. Int J Antimicrob Agents 49:282–289 Seddik HA, Bendali F, Gancel F, Fliss I, Spano G, Drider D (2017) Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrob Proteins 9:111–122 Naghmouchi K, Belguesmia Y, Baah J, Teather R, Drider D (2011) Antibacterial activity of class I and IIa bacteriocins combined with polymyxin E against resistant variants of Listeria monocytogenes and Escherichia coli. Res Microbiol 162:99–107 Hammami R, Fernandez B, Lacroix C, Fliss I (2013) Anti-infective properties of bacteriocins: an update. Cell Mol Life Sci 70:2947–2967 Meade E, Slattery MA, Garvey M (2020) Bacteriocins, potent antimicrobial peptides and the fight against multi-drug resistant species: resistance is futile? Antibiotics 9(1):32 Hammami R, Cotter PD, Rebuffat S, Said LS, Gaudreau H, Bédard F, Biron E, Drider D, Fliss I (2021) Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev 45:1–24 Surendran Nair M, Amalaradjou MA, Venkitanarayanan K (2017) Anti virulence properties of probiotics in combating microbial pathogenesis. Elsevier Ltd., New York, NY. https://doi.org/10.1016/bs.aambs.2016.12.001 Singh VP (2018) Recent approaches in food bio-preservation-a review. Open Vet J 8:104–111 Mitchell A, Chang HYY, DaughertyL FM, Hunter S, Lopez R et al (2015) The Inter Pro protein families database: the classification resource after 15 years. Nucleic Acids Res 43:D213–D221 Helal MM, Hashem AM, Ghobashy MOI, Shalaby ASG (2016) Some physiological and biological studies on reuterin production from Lactobacillus reuteri. J Probiotics Health 4:1000156 Indira M, Venkateswarulu TC, Chakravarthy K, Reddy AR, Babu DJ, Kodali VP (2016) Morphological and biochemical characterization of exopolysaccharide producing bacteria isolated from dairy effluent. J Pharm Sci Res 8:88–91 Ates O (2015) Systems biology of microbial exopolysaccharides production. Front Bioeng Biotech 3:200 Patel S, Goyal A (2012) The current trends and future perspectives of prebiotics research a review. 3 Biotech 2:115–125 Nakamura Y, Nosaka S, Suzuki M, Nagafuchi S, Takahashi T, Yajima T, Takenouchi-ohkubo N, Iwase T, Moro I (2004) Dietary fructooligosaccharides up-regulate immunoglobulin A response and polymeric immunoglobulin receptor expression in intestines of infant mice. Clin Exp Immunol 137:52–58 den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Lipid Res 54(9):2325–2340 Hill D, Sugrue I, Tobin C, Hill C, Stanton C, Ross RP (2018) The Lactobacillus casei group: history and health related applications. Front Microbiol 9:2107 Britton R (2017) In: Lactobacillus reuteri, In: The microbiota in gastrointestinal pathophysiology: implications for human health, prebiotics, probiotics, and dysbiosis. Academic Press, pp. 89–97 Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiel I, Tuohy K (2018) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57:1–24 Ravisankar P, Reddy AA, Nagalakshmi B, Koushik OS, Kumar BV, Anvith PS (2015) The comprehensive review on fat soluble vitamins. IOSR J Pharm 5(11):12–28 Lin Z, Xu Z, Li Y, Wang Z, Chen T, Zhao X (2014) Metabolic engineering of Escherichia coli for the production of riboflavin. Microb Cell Fact 13:104 Markowiak P, Slizewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9:1021 Pylkas AM, Juneja LR, Slavin JL (2005) Comparison of different fibres for in vitro production of short chain fatty acids by intestinal microflora. J Med Food 8(1):113–116 Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11:577–591 Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, Petersen KF, Kibbey RG, Goodman AL, Shulman GI (2016) Acetate mediates a microbiome–brain–cell axis to promote metabolic syndrome. Nature 534:213–217 Gill PA, VanZelm MC, Muir JG, Gibson PR (2018) Short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Thera 48:15–34 Moss JW, Williams JO, Ramji DP (2018) Nutraceuticals as therapeutic agents for atherosclerosis. Biochimica et Biophysica Acta—Mol. Basis Dis 1864:1562–1572 De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, B€ackhed F, Mithieux G, (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96 Smit G, Smit BA, Engels WJ (2005) Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev 29(3):591–610 GhanKA EEA, Hamouda RA (2014) Evaluation of antioxidant and antitumor activities of Lactobacillus acidophilus bacteria isolated from Egyptian infants. Int J Pharmacol 10:282–288 Sun Z, Harris HMB, McCann A, Guo C, Argimón S, Zhang W, Yang X, Jeffery IB, Cooney JC, Kagawa TF, Liu W, Song Y, Salvetti E, Wrobel A, Rasinkangas P, Parkhill J, Rea, MC, O’Sullivan O, Ritari J, Douillard FP, Paul Ross R, Yang R, Briner AE, Felis, GE, de Vos WM, Barrangou, R, Klaenhammer, TR, Caufield PW, Cui Y, Zhang H, O’Toole PW (2015) Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun 6:8322 Savaiano DA (2014) Lactose digestion from yogurt: mechanism and relevance. Am J Clin Nutr 99:1251S-1255S Kim DH, Jin YH (2001) Intestinal bacterial beta-glucuronidase activity of patients with colon cancer. Arch Pharm Res 24:564–567 Sanchez B, Champomier-Verge MC, Anglade P, Baraige F, deLos Reyes-Gavila CG, Margolles A, Zagorec M (2005) Proteomic analysis of global changes in protein expression during bilesalt exposure of Bifidobacterium longum NCIMB 8809. J Bacteriol 187:5799–5808 Buss C, Valle-Tovo C, Miozzo S, Alves de Mattos A (2014) Probiotics andsynbiotics may improve liver aminotransferases levels in non-alcoholic fatty liver disease patients. Ann Hepatol 13:482–488 Olivares M, Diaz-Ropero MA, Gomez N, Lara-Villoslada F, SierraS MJ, A, Martin R, Lopez-Huertas E, Rodriguez JM, Xaus J, (2006) Oral administration of two probiotic strains, Lactobacillus gasseri CECT5714 and Lactobacillus coryniformisCECT5711, enhances the intestinal function of healthy adults. Int J Food Microbiol 107:104–111 Ferrario C, Taverniti V, Milani C, Fiore W, Laureati M, NoniI De, Stuknyte M, Chouaia B, Riso P, Guglielmetti S (2014) Modulation of Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J Nutr 144:1787–1796 Wang L, Zhang J, Guo Z, Kwok L, MaC ZW, Lv Q, Huang W, Zhang H (2014) Effect of oral consumption of probiotic Lactobacillus plantarum P-8 on fecal microbiota, SIgA, SCFAs, and TBAs of adults of different ages. Nutrition 30:776–783 Worthley DL, Le Leu RK, Whitehall VL, Conlon M, ChristophersenC BD, Mallitt KA, Hu Y, Irahara N, Ogino S et al (2009) A human, double-blind, placebo-controlled, crossover trial of prebiotic, probiotic, and synbiotic supplementation: effects on luminal, inflammatory, epigenetic, and epithelial biomarkers of colorectal cancer. Am J Clin Nutr 90:578–586 Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62:67–72 Schneider SM, Girard-Pipau F, Filippi J, Hebuterne X, MoyseD HGC, PompeiA RP (2005) Effects of Saccharomyces boulardii on fecal short-chain fatty acids and microflora in patients on long-term total enteral nutrition. World J Gastroenterol 11:6165–6169 Stadlbauer V, Leber B, Lemesch S, TrajanoskS,Bashir M, Horvath A,Tawdrous,M, Stojakovic T, Fauler G, Fickert P, Högenauer C, Klymiuk I, Stiegler P, Lamprecht M, Pieber TR, Tripolt NJ, Sourij H (2015) Lactobacillus casei shirota supplementation does not restore gut microbiota composition and gut barrier in metabolic syndrome: a randomized pilot study. Plos One 28:10(10):e0141399 Nagata S, Asahara T, Wang C, Suyama Y, Chonan O, Takano K, Daibou M, Takahashi T, Nomoto K, Yamashiro Y (2016) The effectiveness of Lactobacillus beverages in controlling infections among the residents of an aged care facility: a randomized placebo-controlled double-blind trial. Ann Nutr Metab 68:51–59 Hemalatha R, Ouwehand AC, Saarinen MT, Prasad UV, Swetha K, Bhaskar V (2017) Effect of probiotic supplementation on total lactobacilli, bifidobacteria and short chain fatty acids in 2–5-year-old children. Microb Ecol Health Dis 28:1298340 Maldonado J, Lara-Villoslada F, Sierra S, Sempere L, Gomez M, Rodriguez JM, Boza J, Xaus J, Olivares M (2010) Safety and tolerance of the human milk probiotic strain Lactobacillus salivarius CECT5713 in 6-month-old children. Nutrition 26:1082–1087 Mohan R, Koebnick C, Schildt J, Mueller M, Radke M, Blaut M (2008) Effects of Bifidobacterium lactis Bb12 supplementation on body weight, fecal pH, acetate, lactate, calprotectin, and IgA in preterm infants. Pediatr Res 64:418–422 Saez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J, Gil A (2016) Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. Int J Mol Sci 17:928 Miccheli A, Capuani G, Marini F, Tomassini A, PraticoG CS, Gnani D, BavieraG AA, Putignani L et al (2015) Urinary (1)H-NMR based metabolic profiling of children with NAFLD undergoing VSL#3treatment. Int J Obes (Lond) 39:1118–1125 Picca S, Dionisi-Vici C (2019) Hyperammonaemia and metabolic diseases. Critical care pediatric nephrology and dialysis: a practical handbook. Sethi, S.K., Raina R, McCulloch M, Bunchman TE (Eds.) Springer: Singapore pp. 311–323 Isabella VM, Ha BN, Castillo M, Lubkowicz DJ, Rowe SE, Millet YA, Anderson CL, Li N, Fisher AB, West KA et al (2018) Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol 36:857–864 Mathipa MG, Thantsha MS (2017) Probiotic engineering: towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens. Gut Pathog 9:28 Gurbatri CR, Lia I, Vincent R, Coker C, Castro S, Treuting PM, Hinchliffe TE, Arpaia N, Danino T (2020) Engineered probiotics for local tumour delivery of checkpoint blockade nanobodies. Sci Transl Med 12:530 Daeffler KNM, Galley JD, Sheth RU, Ortiz-Velez LC, Bibb CO, Shroyer NF, Britton RA, Tabor JJ (2017) Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol Syst Biol 13(4):923 Riglar DT, Giessen TW, Baym M, Kerns SJ, Niederhuber MJ, Bronson RT, Kotula JW, Gerber GK, Way JC, Silver PA (2017) Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat Biotechnol 35(7):653–658 Geldart K, Borrero J, Kaznessis YN (2015) Chloride-inducible expression vector for delivery of antimicrobial peptides targeting antibiotic-resistant Enterococcus faecium. Appl Environ Microbiol 81(11):3889–3897 Hwang IY, Koh E, Wong A, March JC, Bentley WE, Lee YS, Chang MW (2017) Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat Commun 8:15028 Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ (2018) Probiotic strains detect and suppress cholera in mice. Sci Transl Med 10:eaao02586 Palmer JD, Piattelli E, McCormick BA, Silby MW, Brigham CJ, Bucci V (2018) Engineered probiotic for the inhibition of Salmonella via tetrathionate-induced production of microcin H47. ACS Infect Dis 4(1):39–45 Takiishi T, Korf H, Van Belle TL, Robert S, Grieco FA, Caluwaerts S, Galleri L, Spagnuolo I, Steidler L, Van Huynegem K (2012) Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Investig 122:1717–1725 Agarwal P, Khatri P, Billack B, Low WK, Shao J (2014) Oral delivery of glucagon like peptide-1 by a recombinant Lactococcus lactis. Pharm Res 31:3404–3414 Hvidberg A, Nielsen MT, Hilsted J, Ørskov C, Holst JJ (1994) Effect of glucagonlikepeptide-1 (proglucagon 78–107amide) on hepatic glucose production in healthy man. Metabolism 43:104–108 Mitchell JJ, Trakadis YJ, Scriver CR (2011) Phenylalanine hydroxylase deficiency. Genetics Med 13:697–707 Durrer KE, Allen MS, Von Herbing IH (2017) Genetically engineered probiotic for the treatment of phenylketonuria (PKU); assessment of a novel treatment in vitro and in the PAHenu2 mouse model of PKU. PLoS ONE 12:e0176286 O’Connell Motherway M, O’driscoll J, Fitzgerald GF, Van Sinderen D, (2009) Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003. Microb Biotechnol 2(3):321–332 Hirayama Y, Sakanaka M, Fukuma H, Murayama H, Kano Y, Fukiya S, Yokota A (2012) Development of a double-crossover marker less gene deletion system in Bifidobacterium longum: functional analysis of the α-galactosidase gene for raffinose assimilation. Appl Environ Microbiol 78(14):4984–4994 Sakaguchi K, He J, Tani S, Kano Y, Suzuki T (2012) A targeted gene knockout method using a newly constructed temperature-sensitive plasmid mediated homologous recombination in Bifidobacterium longum. Appl Microbiol Biotechnol 95(2):499–509 O’Callaghan A, van Sinderen D (2016) Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol 7:925 Hidalgo-Cantabrana C, O’Flaherty S, Barrangou R (2017) CRISPR-based engineering of next-generation lactic acid bacteria. Curr Opin Microbiol 37:79–87 Roberts A, Barrangou R (2020) Applications of CRISPR-Cas systems in lactic acid bacteria. FEMS Microbiol Rev 1–15:fuaa016 Briner AE, Lugli GA, Milani C, Duranti S, Turroni F, Gueimonde M, Margolles A, Van Sinderen D, Ventura M, Barrangou R (2015) Occurrence and diversity of CRISPR-Cas systems in the genus Bifidobacterium. PLoS ONE 10(7):e0133661 Landete JM, Peirot´en ´A, Rodríguez E, Margolles A, Medina M, Arqu´es JL, (2014) Anaerobic green fluorescent protein as a marker of Bifidobacterium strains. Int J Food Microbiol 175:6–13 Watson D, Sleator RD, Hill C, Gahan CG (2008) Enhancing bile tolerance improves survival and persistence of Bifidobacterium and Lactococcus in the murine gastrointestinal tract. BMC Microbiol 8(1):176 Bottacini F, Morrissey R, Roberts RJ, James K, Van Breen J, Egan M, Lambert J, Van Limpt K, Knol J, O’Connell-Motherway M (2018) Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve. Nucleic Acids Res 46(4):1860–1877 O’Callaghan A, Bottacini F, Motherway MC, Van Sinderen D (2015) Pangenome analysis of Bifidobacterium longum and site-directed mutagenesis through by-pass of restriction-modification systems. BMC Genomics 16(1):832 Lee JH, O’Sullivan DJ (2010) Genomic insights into bifidobacteria. Microbiol Mol Biol Rev 74(3):378–416 Bron PA, Marcelli B, Mulder J, van der Els S, Morawska LP, Kuipers OP, Kok J, Kleerebezem M (2019) Renaissance of traditional DNA transfer strategies for improvement of industrial lactic acid bacteria. Curr Opin Biotechnol 56:61–68 Dominguez W, O’Sullivan DJ (2013) Developing an efficient and reproducible conjugation-based gene transfer system for bifidobacteria. Microbiology 159(2):328–338 Sun Z, Westermann C, Yuan J, Riedel CU (2014) Experimental determination and characterization of the gap promoter of Bifidobacterium bifidum S17. Bioengineered 5(6):371–377 Klijn A, Moine D, Delley M, MercenierA AF, Pridmore R (2006) Construction of a reporter vector for the analysis of Bifidobacterium longum promoters. Appl Environ Microbiol 72(11):7401–7405 Sun Z, Baur A, Zhurina D, Yuan J, Riedel CU (2012) Accessing the inaccessible: molecular tools for bifidobacteria. Appl Environ Microbiol 78(15):5035–5042 Zuo F, Yu R, Feng X, Khaskheli GB, Chen L, Ma H, Chen S (2014) Combination of heterogeneous catalase and superoxide dismutase protects Bifidobacterium longum strain NCC2705 from oxidative stress. Appl Microbiol Biotechnol 98(17):7523–7534 Ruegg TL, Pereira JH, Chen JC, DeGiovanni A, Novichkov P, Mutalik VK, Tomaleri GP, Singer SW, Hillson NJ, Simmons BA, Adams PD, Thelen MP (2018) Jungle Express is a versatile repressor system for tight transcriptional control. Nat Comm 9:3617–3617 Lubkowicz D, Ho CL, Hwang IY, Yew WS, Lee YS, Chang MW (2018) Reprogramming probiotic Lactobacillus reuterias a biosensor for Staphylococcus aureus derived AIP-I detection. ACS Synth Biol 7(5):1229–1237 Renwick MJ, Brogan DM, Mossialos E (2016) A systematic review and critical assessment of incentive strategies for discovery and development of novel antibiotics. J Antibiot 69:73–88 Saeidi N, Wong CK, Lo TM, Nguyen HX, Ling H, Leong SSJ, Poh CL, Chang MW (2011) Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol Syst Biol 7:521 Gupta S, Bram EE, Weiss R (2013) Genetically programmable pathogen sense and destroy. ACS Synthetic Biol 2:715–723 Sassone-Corsi M, Nuccio SP, Liu H, Hernandez D, Vu CT, Takahashi AA, Edwards RA, Raffatellu M (2016) Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540:280–283 Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, Russell JM, Bevins CL, Adams LG, Tsolis RM (2010) Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467:426–429 Ali M, Nelson AR, Lopez AL, Sack DA (2015) Updated global burden of cholera in endemic countries. PLoS Neglected Trop Dis 9:e0003832 Bennish ML (1994) Cholera: pathophysiology, clinical features, and treatment. In: Vibrio cholerae and cholera. molecular to global perspectives. Wachsmuth IK Blake PA OlsvikO (Eds.) Washington D.C. ASM Press pp 229–255 Duan F, March JC (2010) Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc Natl Acad Sci 107:11260–11264 Sedlmayer F, Hell D, Müller M, Ausländer D, Fussenegger M (2018) Designer cells programming quorum-sensing interference with microbes. NatCommun 9:1822 Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Mol Biol Rev 55:123–142 Riedel CU, Casey PG, Mulcahy H, O’Gara F, Gahan CG, Hill C (2007) Construction of p16Slux, a novel vector for improved bioluminescent labelling of gram-negative bacteria. Appl Environ Microbiol 73:7092–7095 Leonard N, Bishop A, Polak J, Talbot I (1998) Expression of nitric oxide synthase in inflammatory bowel disease is not affected by corticosteroid treatment. J Clin Pathol 51:750–753 Kimura H, Miura S, Shigematsu T, Ohkubo N, Tsuzuki Y, Kurose I, Higuchi H, Akiba Y, Hokari R, Hirokawa M (1997) Increased nitric oxide production and inducible nitric oxide synthase activity in colonic mucosa of patients with active ulcerative colitis and Crohn’s disease. Dig Dis Sci 42:1047–1054 Neef A, Sanz Y (2013) Future for probiotic science in functional food and dietary supplement development. Curr Opin Clin Nutr Metab Care 16:679–687 Dhar D, Mohanty A (2020) Gut microbiota and Covid-19- possible link and implications. Virus Res 285:198018 Ceccarelli G, Scagnolari C, Pugliese F, Mastroianni CM, d’Ettorre G (2020) Probiotics and COVID-19. Lancet Gastroenterol Hepatol 5(8):721–722 Huang C, Wang Y, Li X, Ren L, Zhao J, Hu YI, Zhang LI, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo LI, XieJ., Wang G, Jiang R, Gao Z, Jin QI, Wang J, Cao B, (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395(10223):497–506 Bhaskar S, Sinha A, Banach M, Mittoo S, Weissert R, Kass JS, Rajagopal S, PaiAR KS (2020) Cytokine storm in COVID-19—Immunopathological mechanisms, clinical considerations, and therapeutic approaches: The REPROGRAM Consortium Position Paper. Front Immunol 11:1648 Xu K, Cai H, Shen Y, Ni Q, Chen Y, Hu S, Li J, Wang H, Yu L, Huang H (2020) Management of corona virus disease-19 (COVID-19): the Zhejiang experience. J Zhejiang Univ (medical science) 49 Cao X (2020) COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol 20(5):269–270 Baud D, Agri VD, Gibson GR, Reid G, Giannoni E (2020) Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front Public Health 8:186. https://doi.org/10.3389/fpubh.2020.00186 Yu L, Tong Y, Shen G, Fu A, Lai Y, Zhou X, Yuan Y, Wang Y, Pan Y, Yu Z (2020). Immunodepleting with hypoxemia: a potential high risk subtype of coronavirus disease MedRxiv. https://doi.org/10.1101/2020.03.03.20030650 Mak JWY, Chan FKL, Ng SC (2020) Probiotics and COVID-19: one size does not fit all. Lancet Gastroenterol Hepatol 5(7):644–645 Schmitter T, Fiebich BL, Fischer JT, GajfulinM LN, Rose T, Goetz MR (2018) Ex vivo anti-inflammatory effects of probiotics for periodontal health. J Oral Microbiol 10(1):1502027 Sundararaman A, Ray M, Ravindra PV, Halami PM (2020) Role of probiotics to combat viral infections with emphasis on COVID-19. Appl Microbiol Biotechnol 104(19):8089–8104 Ayyanna R, Ankaiah D, Arul V (2018) Anti-inflammatory and antioxidant properties of probiotic bacterium Lactobacillus mucosae AN1 and Lactobacillus fermentum SNR1 in Wistar albino rats. Front Microbiol 9:3063 Jones SE, Versalovic J (2009) Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol 9(1):35 Bottari B, Castellone V, Neviani E (2020) Probiotics and Covid-19. Int J Food Sci Nutr 12:1–7 Lee N, Kim WU (2017) Microbiota in T-cell homeostasis and inflammatory diseases. Exp Mol Med 49(5):e340 Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9(5):356–368 Ivanov II, FrutosRdeL MN, Yoshinaga K, Rifkin DB, Sartor RB et al (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4(4):337–349 Li JQ, Zhao JJ, Wang XD, Qayum A, Hussain MA, Liang GZ et al (2019) Novel angiotensin-converting enzyme-inhibitory peptides from fermented bovine milk started by lactobacillus helveticus KLDS.31 and lactobacillus casei KLDS.105:Purification, identification, and interaction mechanisms. Front Microbiol 10:2643 Minato T, Nirasawa S, Sato T, Yamaguchi T, Hoshizaki M, Inagaki T et al (2020) B38-CAP is a bacteria-derived ACE2-like enzyme that suppresses hypertension and cardiac dysfunction. Nat Commun 11(1):1058 Verma A, Xu K, Du T, Zhu P, Liang Z, Liao S, Zhang J, Raizada M, Grant M, Li Q (2019) Expression of human ACE2 in Lactobacillus and beneficial effects in diabetic retinopathy in mice. Molecular Therapy - Methods & Clinical Development 14:161–170 Górska A, Przystupski D, Niemczura MJ, Kulbacka J (2019) Probiotic Bacteria: a promising tool in cancer prevention and therapy. Curr Microbiol 76:939–949 Tiptiri-Kourpeti A, Spyridopoulou K, Santarmaki V, Aindelis G, Tompoulidou E, Lamprianidou EE, Saxami G, Ypsilantis P, Lampri ES, Simopoulos C et al (2016) Lactobacillus Casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS ONE 11:e0147960 Kim Y, Oh S, Yun HS, Oh S, Kim SH (2010) Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. Lett Appl Microbiol 51:123–130 Uccello M, Malaguarnera G, Basile F, D’agata V, Malaguarnera M, Bertino G, Vacante M, Drago F, Biondi A (2012) Potential role of probiotics on colorectal cancer prevention. BMC Surg 12:S35 Lamichhane P, Maiolini M, Alnafoosi O, Hussein S, Alnafoosi H, Umbela S, Richardson T, Alla N, Lamichhane N, Subhadra B et al (2020) Colorectal cancer and probiotics: Are bugs really drugs? Cancers 12:1162 Motevaseli E, Dianatpour A, Ghafouri-Fard S (2017) The Role of probiotics in cancer treatment: emphasis on their in vivo and in vitro anti-metastatic effects. Int J Mol Cell Med 6:66–76 Shenderov BA (2013) Metabiotics: novel idea or natural development of probiotic conception. Microb Ecol Health Dis. https://doi.org/10.3402/mehd.v24i0.20399 Lebeer S, Bron PA, Marco ML, Van Pijkeren JP, O’Connell Motherway M, Hill C, Pot B, Roos S, Klaenhammer T (2018) Identification of probiotic effector molecules: present state and future perspectives. Curr Opin Biotechnol 49:217–223 Kumar M, Nagpal R, Verma V, Kumar A, Kaur N, Hemalatha R, Gautam SK, Singh B (2013) Probiotic metabolites as epigenetic targets in the prevention of colon cancer. Nutr Rev 71:23–34 Sharma S, Singh RL, Kakkar P (2011) Modulation of Bax/Bcl-2 and caspases by probiotics during acetaminophen induced apoptosis in primary hepatocytes. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 49:770–779 Karimi Ardestani S, Tafvizi F, Tajabadi Ebrahimi M (2019) Heat-killed probiotic bacteria induce apoptosis of HT-29 human colon adenocarcinoma cell line via the regulation of Bax/Bcl2 and Caspases pathway. Human Exp Toxicol 38:1069–1081 Chumchalová J, Smarda J (2003) Human tumor cells are selectively inhibited by colicins. Folia Microbiol 48:111–115 Konishi H, Fujiya M, Tanaka H, Ueno N, Moriichi K, Sasajima J, Ikuta K, Akutsu H, Tanabe H, Kohgo Y (2016) Probiotic derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat Commun 7:12365 Kadirareddy RH, Vemuri SG, Palempalli UMD (2016) Probiotic conjugated linoleic acid mediated apoptosis in breast Cancer cells by downregulation of NFκB. Asian Pac J Cancer Prev APJCP 17:3395–3403 Khosrovan Z, Haghighat S, Mahdavi M (2020) The probiotic bacteria induce apoptosis in breast and colon cancer cells: an immunostimulatory effect. Immunoregulation 3:37–50 Isazadeh A, Hajazimian S, Shadman B, Safaei S, Bedoustani AB, Chavoshi R, Shanehbandi D, Mashayekhi M, Nahaei M, Baradaran B (2020) Anti-cancer effects of probiotic Lactobacillus acidophilus for colorectal cancer cell line caco-2 through apoptosis induction. Pharm Sci 27:262–267 Jan G, Belzacq AS, Haouzi D, Rouault A, Métivier D, Kroemer G, Brenner C (2002) Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 9:179–188 Wang H, Cheng X, Zhang L, Xu S, Zhang Q, Lu R (2019) A surface-layer protein from Lactobacillus acidophilus NCFM induces autophagic death in HCT116 cells requiring ROS-mediated modulation of MTOR and JNK signaling pathways. Food Funct 10:4102–4112 Sharma M, Shukla G (2016) Metabiotics: one step ahead of probiotics; an insight into mechanisms involved in anticancerous effect in colorectal cancer. Front Microbiol 7:1940 Sharaf LK, Sharma M, Chandel D, Shukla G (2018) Prophylactic intervention of probiotics (L. acidophilus, L. rhamnosus GG) and celecoxib modulate bax-mediated apoptosis in 1,2-Dimethylhydrazine-induced experimental colon carcinogenesis. BMC Cancer 18:1111 Fahmy CA, Gamal-Eldeen AM, El-Hussieny EA, Raafat BM, Mehanna NS, Talaat RM, Shaaban MT (2019) Bifidobacterium Longum suppresses murine colorectal cancer through the modulation of oncomiRs and tumor uppressor MiRNAs. Nutr Cancer 71:688–700 Azam R, Ghafouri-Fard S, Tabrizi M, Modarressi MH, Ebrahimzadeh-Vesal R, Daneshvar M, Mobasheri MB, Motevaseli E (2014) Lactobacillus Acidophilus and Lactobacillus Crispatus culture supernatants downregulate expression of cancer-testis genes in the MDA-MB-231 cell line. Asian Pac J Cancer Prev APJCP 15:4255–4259 Motevaseli E, Shirzad M, Akrami SM, Mousavi AS, Mirsalehian A, Modarressi MH (2013) Normal and tumour cervical cells respond differently to vaginal Lactobacilli, independent of PH and lactate. J Med Microbiol 62:1065–1072 Taherian-Esfahani Z, Abedin-Do A, Nouri Z, Mirfakhraie R, Ghafouri-Fard S, Motevaseli E (2016) Lactobacilli differentially modulate MTOR and Wnt/β-catenin pathways in different cancer lell Lines. Iran J Cancer Prev 9:e5369 Hanahan D, Weinberg RA (2011) Hallmarks of cancer: The next generation. Cell 144:646–674 Seth A, Yan F, Polk DB, Rao RK (2008) Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP Kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 294:G1060–G1069 Asoudeh-Fard A, Barzegari A, Dehnad A, Bastani S, Golchin A, Omidi Y (2017) Lactobacillus Plantarum induces apoptosis in oral cancer KB cells through upregulation of PTEN and downregulation of MAPK signalling pathways. Bioimpacts 7:193–198 Heemels MT (2016) Neurodegenerative diseases. Nature 539:179 Fratiglioni L, Qiu C (2009) Prevention of common neurodegenerative disorders in the elderly. Exp Gerontol 44:46–50 Dugger BN, Dickson DW (2017) Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 9:a028035 Kesika P, Suganthy N, Sivamaruthi BS, Chaiyasut C (2021) Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Sci 264:118627 Spielman LJ, Gibson DL, Klegerism A (2018) Unhealthy gut, unhealthy brain: the role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int 120:149–163 Cirstea MS, Yu AC, Golz E, Sundvick K, Kliger D, Radisavljevic N et al (2020) Microbiota composition and metabolism are associated with gut function in Parkinson’s disease. Mov Disord 35:1208–1217 Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S (2017) Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci 74:3769–3787 Pandey KR, Naik SR, Vakil BV (2015) Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol 52:7577–7587 Perez Visñuk D, Savoy de Giori G, LeBlanc JG, de Moreno de LeBlanc A, (2020) Neuroprotective effects associated with immune modulation by selected lactic acid bacteria in a Parkinson’s disease model. Nutrition 79–80:110995 Borzabadi S, Oryan S, Eidi A, Aghadavod E, Daneshvar Kakhaki R, Tamtaji OR et al (2018) The effects of probiotic supplementation on gene expression related to inflammation, insulin and lipid in patients with Parkinson’s disease: a randomized, double-blind, placebocontrolled trial. Arch Iran Med 21:289–295 Magistrelli L, Amoruso A, Mogna L, Graziano T, Cantello R, Pane M, Comi C (2019) Probiotics may have beneficial effects in Parkinson’s disease: in vitro evidence. Front Immunol 10:969 Hsieh TH, Kuo CW, Hsieh KH, Shieh MJ, Peng CW, Chen YC, Chang YL, Huang YZ, Chen CC, Chang PK, Chen KY, Chen HY (2020) Probiotics alleviate the progressive deterioration of motor functions in a mouse model of Parkinson’s disease. Brain Sci 10:206 Distrutti E, O’Reilly J-A, McDonald C, Cipriani S, Renga B, Lynch MA, Fiorucci S (2014) Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP. PLoS ONE 9:e106503 Castelli V, d’Angelo M, Lombardi F, Alfonsetti M, Antonosante A, Catanesi M, Benedetti E, Palumbo P, Cifone MG, Giordano A, Desideri G, Cimini A (2020) Effects of the probiotic formulation SLAB51 in in vitro and in vivo Parkinson’s disease models. Aging 12:4641–4659 Boon Wong C, Kobayashi Y, Xiao J (2018) Probiotics for preventing cognitive impairment in Alzheimer’s disease. In: Gut Microbiota - Brain Axis (Evrensel A, Önen Ünsalver B, eds), pp85–104. London, UK: IntechOpen Gazerani, (2019) Probiotics for Parkinson’s disease. Int J Mol Sci 20:4121 Bashiardes S, Godneva A, Elinav E, Segal E (2018) Towards utilization of the human genome and microbiome for personalized nutrition. Curr Opin Biotechnol 51:57–63 Suez J, Zmoraa N, Elina E (2020) Probiotics in the next-generation sequencing era. Gut Microbes. https://doi.org/10.1080/19490976.2019.1586039 Veiga P, Suez J, Derrien M, Elinav E (2020) Moving from probiotics to precision probiotics. Nat Microbiol 5:878–880 Leshem A, Liwinski T, Elinav E (2020) Immune-microbiota interplay and colonization resistance in infection. Mol Cell 21:597–613 Foditsch C, Santos TM, Teixeira AG, Pereira RV, Dias JM, Gaeta N et al (2014) Isolation and characterization of Faecalibacterium prausnitzii from calves and piglets. PLoS ONE 9:e116465 Schneeberger M, Everard A, Gómez-Valadés AG, Matamoros S, Ramírez S, Delzenne NM et al (2015) Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep 5:16643 Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO et al (2016) Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65:426–436 Li J, Lin S, Vanhoutte PM, Woo CW, Xu A (2016) Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in apoe-/-mice clinical. Circulation 133:2434–2446 Troy EB, Kasper DL (2010) Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front Biosci 15:25–34 RoundJL LSM, Li J, Tran G, Jabri B, Chatila TA et al (2011) The toll like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332:974–977 Yang JY, Lee YS, Kim Y, Lee SH, Ryu S, Fukuda S et al (2016) Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol 10:104–116 Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extra intestinal diseases. World J Gastroenterol 17:1519–1528 Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H et al (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232–236 Liong MT (2008) Safety of probiotics: translocation and infection. Nutr Rev 66:192–202 Martin-Cabezas R, Davideau JL, Tenenbaum H, Huck O (2016) Clinical efficacy of probiotics as an adjunctive therapy to non-surgical periodontal treatment of chronic periodontitis: a systematic review and meta-analysis. J Clin Periodontol 43(6):520–530 Sulik-Tyszka B, Snarski E, Niedźwiedzka M, Augustyniak M, Myhre TN, Kacprzyk A, Kopec ES, Roszkowska M, Trojaczek JD, Jędrzejczak WW, Wróblewska M (2018) Experience with Saccharomyces boulardii probiotic in onco-haematological patients. Probiotics and Antimicro Prot 10:350–355 Muñoz P, Bouza E, Cuenca-Estrella M, Eiros JM, Pérez MJ, Somolinos S, Rincón C, Hortal J, Peláez T (2005) Saccharomyces cerevisiae Fungemia: An Emerging Infectious Disease. Clin Infect Dis 11:1625–1634 Sutton A (2008) Product development of probiotics as biological drugs. Clin Infect Dis 46:S128–S132 Costa GN, Miglioranza LHS (2012) Probiotics: the effects on human health and current prospects. In: Rigobelo EC (ed) Probiotics. Intech Open, London, pp 367–384 Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15:67–78 Sanders ME, Benson A, Lebeer S, Merenstein DJ, Klaenhammer TR (2018) Shared mechanisms among probiotic taxa: implications for general probiotic claims. Curr Opin Biotechnol 49:207–216 Garneau JE, Moineau S (2011) Bacteriophages of lactic acid bacteria and their impacton milk fermentations. Microb Cell Factor 10:S20 Lucchini S, Sidoti J, BrussowH, (2000) Broad-range bacteriophage resistance inStreptococcus thermophilus by insertional mutagenesis. Virology 275:267–277 Antunes AEC, Cazetto TF, Abolini HM (2005) Viability of probiotic micro-organisms during storage, post acidification and sensory analysis of fat-free yogurts with added whey protein concentrate. Int J Dairy Technol 58:169–173 Pereira EPR, Cavalcanti RN, Esmerino EA, Silva R, Guerreiro LRM, Cunha RL, Bolini HMA, Meireles MA, Faria JAF, Cruz AG (2016) Effect of incorporation of antioxidants on the chemical, rheological, and sensory properties of probiotic petit Suisse cheese. J Dairy Sci 99:1762–1772 Davis C (2014) Enumeration of probiotic strains: review of culture-dependent and alternative techniques to quantify viable bacteria. J Microbiol Methods 103:9–17 Marcobal A et al (2013) A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J7:1933–1943 Zmora N et al (2018) Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174:1388–1405 Thompson JA, Oliveira RA, Djukovic A, Ubeda C, Xavier KB (2015) Manipulation of the quorum sensing signal AI-2 affects the antibiotictreatedgut microbiota. Cell Rep 10:1861–1871 McFarland LV (2014) Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: a systematic review. BMJ Open 4:e005047 Warda AK, Bettio PDH, Hueston CM, Di Benedetto G, Clooney AG, Hill C (2020) Oral administration of heat-treated Lactobacilli modifies the murine microbiome and reduces Citrobacter induced colitis. Front Microbiol 11:69 Suez J, ZmoraN SE, Elinav E (2019) The pros, cons, and many unknowns of probiotics. Nat Med 25:716–729 Mills JP, Rao K, Young VB (2018) Probiotics for prevention of Clostridium difficile infection. Curr Opin Gastroenterol 34(1):3–10 Kent AG, Vill AC, Shi Q, Satlin MJ, Brito IL (2020) Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nat Commun 11:4379 Palumbo P, Lombardi F, Cifone MG, Cinque B (2019) The epithelial barrier model shows that the properties of VSL#3 depend from where it is manufactured. Endocr Metab Immune Disord Drug Targets 19:199–206 Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A (2019) Mechanisms of action of probiotics. Adv Nutr 10:S49–S66