Biosynthesis of the proteasome inhibitor syringolin A: the ureido group joining two amino acids originates from bicarbonate

BMC Biochemistry - Tập 10 - Trang 1-9 - 2009
Christina Ramel1, Micha Tobler1, Martin Meyer1, Laurent Bigler2, Marc-Olivier Ebert3, Barbara Schellenberg1, Robert Dudler1
1Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
2Institute of Organic Chemistry, University of Zurich, Zurich, Switzerland
3Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland

Tóm tắt

Syringolin A, an important virulence factor in the interaction of the phytopathogenic bacterium Pseudomonas syringae pv. syringae B728a with its host plant Phaseolus vulgaris (bean), was recently shown to irreversibly inhibit eukaryotic proteasomes by a novel mechanism. Syringolin A is synthesized by a mixed non-ribosomal peptide synthetase/polyketide synthetase and consists of a tripeptide part including a twelve-membered ring with an N-terminal valine that is joined to a second valine via a very unusual ureido group. Analysis of sequence and architecture of the syringolin A synthetase gene cluster with the five open reading frames sylA-sylE allowed to formulate a biosynthesis model that explained all structural features of the tripeptide part of syringolin A but left the biosynthesis of the unusual ureido group unaccounted for. We have cloned a 22 kb genomic fragment containing the sylA-sylE gene cluster but no other complete gene into the broad host range cosmid pLAFR3. Transfer of the recombinant cosmid into Pseudomonas putida and P. syringae pv. syringae SM was sufficient to direct the biosynthesis of bona fide syringolin A in these heterologous organisms whose genomes do not contain homologous genes. NMR analysis of syringolin A isolated from cultures grown in the presence of NaH13CO3 revealed preferential 13C-labeling at the ureido carbonyl position. The results show that no additional syringolin A-specific genes were needed for the biosynthesis of the enigmatic ureido group joining two amino acids. They reveal the source of the ureido carbonyl group to be bicarbonate/carbon dioxide, which we hypothesize is incorporated by carbamylation of valine mediated by the sylC gene product(s). A similar mechanism may also play a role in the biosynthesis of other ureido-group-containing NRPS products known largely from cyanobacteria.

Tài liệu tham khảo

Wäspi U, Blanc D, Winkler T, Ruedi P, Dudler R: Syringolin, a novel peptide elicitor from Pseudomonas syringae pv. syringae that induces resistance to Pyricularia oryzae in rice. Mol Plant-Microbe Interact. 1998, 11 (8): 727-733. 10.1094/MPMI.1998.11.8.727. Wäspi U, Hassa P, Staempfli A, Molleyres L-P, Winkler T, Dudler R: Identification and structure of a family of syringolin variants: Unusual cyclic peptides from Pseudomonas syringae pv. syringae that elicit defense responses in rice. Microbiol Res. 1999, 154: 1-5. Michel K, Abderhalden O, Bruggmann R, Dudler R: Transcriptional changes in powdery mildew infected wheat and Arabidopsis leaves undergoing syringolin-triggered hypersensitive cell death at infection sites. Plant Mol Biol. 2006, 62: 561-578. 10.1007/s11103-006-9045-7. Wäspi U, Schweizer P, Dudler R: Syringolin reprograms wheat to undergo hypersensitive cell death in a compatible interaction with powdery mildew. Plant Cell. 2001, 13 (1): 153-161. 10.1105/tpc.13.1.153. Groll M, Schellenberg B, Bachmann AS, Archer CR, Huber R, Powell TK, Lindow S, Kaiser M, Dudler R: A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature. 2008, 452 (7188): 755-758. 10.1038/nature06782. Clerc J, Groll M, Illich DJ, Bachmann AS, Huber R, Schellenberg B, Dudler R, Kaiser M: Synthetic and structural studies on syringolin A and B reveal critical determinants of selectivity and potency of proteasome inhibition. Proc Natl Acad Sci USA. 2009, 106 (16): 6507-6512. 10.1073/pnas.0901982106. von Döhren H, Dieckmann R, Pavela-Vrancic M: The nonribosomal code. Chem Biol. 1999, 6 (10): R273-R279. 10.1016/S1074-5521(00)80014-9. Marahiel MA, Stachelhaus T, Mootz HD: Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev. 1997, 97 (7): 2651-2673. 10.1021/cr960029e. Finking R, Marahiel MA: Biosynthesis of nonribosomal peptides. Annu Rev Microbiol. 2004, 58: 453-488. 10.1146/annurev.micro.58.030603.123615. Amrein H, Makart S, Granado J, Shakya R, Schneider-Pokorny J, Dudler R: Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301D-R. Mol Plant-Microbe Interact. 2004, 17 (1): 90-97. 10.1094/MPMI.2004.17.1.90. Fischbach MA, Walsh CT: Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: Logic, machinery, and mechanisms. Chem Rev. 2006, 106 (8): 3468-3496. 10.1021/cr0503097. Hopwood DA: Genetic contributions to understanding polyketide synthases. Chem Rev. 1997, 97 (7): 2465-2497. 10.1021/cr960034i. Harada K, Fujii K, Shimada T, Suzuki M, Sano H, Adachi K, Carmichael WW: Two cyclic peptides, anabaenopeptins, a third group of bioactive compounds from the cyanobacterium Anabaena flos-aquae NRC-525-17. Tetrahedron Lett. 1995, 36 (9): 1511-1514. 10.1016/0040-4039(95)00073-L. Murakami M, Shin HJ, Matsuda H, Ishida K, Yamaguchi K: A cyclic peptide, anabaenopeptin B, from the cyanobacterium Oscillatoria agardhii. Phytochemistry. 1997, 44 (3): 449-452. 10.1016/S0031-9422(96)00437-2. Gesner-Apter S, Carmeli S: Three novel metabolites from a bloom of the cyanobacterium Microcystis sp. Tetrahedron. 2008, 64 (28): 6628-6634. 10.1016/j.tet.2008.05.031. Okumura HS, Philmus B, Portmann C, Hemscheidt TK: Homotyrosine-containing cyanopeptolins 880 and 960 and anabaenopeptins 908 and 915 from Planktothrix agardhii CYA 126/8. J Nat Prod. 2009, 72 (1): 172-176. 10.1021/np800557m. Williams DE, Craig M, Holmes CFB, Andersen RJ: Ferintoic acids A and B, new cyclic hexapeptides from the freshwater cyanobacterium Microcystis aeruginosa. J Nat Prod. 1996, 59 (6): 570-575. 10.1021/np960108l. Matthew S, Ross C, Paul VJ, Luesch H: Pompanopeptins A and B, new cyclic peptides from the marine cyanobacterium Lyngbya confervoides. Tetrahedron. 2008, 64 (18): 4081-4089. 10.1016/j.tet.2008.02.035. Schmidt EW, Harper MK, Faulkner DJ: Mozamides A and B, cyclic peptides from a theonellid sponge from Mozambique. J Nat Prod. 1997, 60: 779-782. 10.1021/np970195x. Muller D, Krick A, Kehraus S, Mehner C, Hart M, Kupper FC, Saxena K, Prinz H, Schwalbe H, Janning P: Brunsvicamides A-C: Sponge-related cyanobacterial peptides with Mycobacterium tuberculosis protein tyrosine phosphatase inhibitory activity. J Med Chem. 2006, 49 (16): 4871-4878. 10.1021/jm060327w. Staskawicz B, Dahlbeck D, Keen N, Napoli C: Molecular characterization of cloned avirulence genes from race-0 and race-1 of Pseudomonas syringae pv. glycinea. J Bacteriol. 1987, 169 (12): 5789-5794. Wäspi U, Misteli B, Hasslacher M, Jandrositz A, Kohlwein SD, Schwab H, Dudler R: The defense-related rice gene Pir7b encodes an "alpha/beta hydrolase fold" protein exhibiting esterase activity towards naphthol AS-esters. Eur J Biochem. 1998, 254: 32-37. 10.1046/j.1432-1327.1998.2540032.x. Reimmann C, Hofmann C, Mauch F, Dudler R: Characterization of a rice gene induced by Pseudomonas syringae pv. syringae: Requirement for the bacterial lemA gene function. Physiol Mol Plant Pathol. 1995, 46 (1): 71-81. 10.1006/pmpp.1995.1006. Senior E, Bull AT, Slater JH: Enzyme evolution in a microbial community growing on herbicide Dalapon. Nature. 1976, 263 (5577): 476-479. 10.1038/263476a0. Smith JA, Métraux JP: Pseudomonas syringae pathovar syringae induces systemic resistance to Pyricularia oryzae in rice. Physiol Mol Plant Pathol. 1991, 39 (6): 451-461. 10.1016/0885-5765(91)90011-6. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T: KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36: D480-D484. 10.1093/nar/gkm882. Golemi D, Maveyraud L, Vakulenko S, Samama JP, Mobashery S: Critical involvement of a carbamylated lysine in catalytic function of class D beta-lactamases. Proc Natl Acad Sci USA. 2001, 98 (25): 14280-14285. 10.1073/pnas.241442898. Maveyraud L, Golemi D, Kotra LP, Tranier S, Vakulenko S, Mobashery S, Samama JP: Insights into class D beta-lactamases are revealed by the crystal structure of the OXA10 enzyme from Pseudomonas aeruginosa. Structure. 2000, 8 (12): 1289-1298. 10.1016/S0969-2126(00)00534-7. Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Seidman JG, Struhl K: Current protocols in molecular biology. 1987, New York: Wiley and Sons Finan TM, Kunkel B, Devos GF, Signer ER: 2nd symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamin synthesis genes. J Bacteriol. 1986, 167 (1): 66-72. Christensen BB, Sternberg C, Andersen JB, Palmer RJ, Nielsen AT, Givskov M, Molin S: Molecular tools for the study of biofilm physiology. Methods Enzymol. 1999, San Diego: Academic Press, 20-42. full_text. Voisard C, Bull CT, Keel C, Laville J, Maurhofer M, Schnider U, Défago G, Haas D: Biocontrol of root diseases by Pseudomonas fluorescens CHA0: current concepts and experimental approaches. Molecular ecology of rhizosphere microorganisms. Edited by: F. OG, D. D, B B. 1994, Weinheim, Germany: VCH Publishers, 67-89. full_text. Simon R, Priefer U, Puhler A: A broad host range mobilization system for in vivo geneic engineering: transposon mutagenesis in Gram-negative bacteria. Bio-Technology. 1983, 1 (9): 784-791. Blumer C, Heeb S, Pessi G, Haas D: Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA. 1999, 96 (24): 14073-14078. 10.1073/pnas.96.24.14073. Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, Reimmann C, Notz R, Defago G, Haas D: Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol. 2000, 182 (5): 1215-1225. 10.1128/JB.182.5.1215-1225.2000. Gross DC: Regulation of syringomycin synthesis in Pseudomonas syringae pv. syringae and defined conditions for its production. J Appl Bacteriol. 1985, 58: 167-174. Mo Y-Y, Gross DC: Plant signal molecules activate the syrB gene, which is required for syringomycin production by Pseudomonas syringae pv. syringae. J Bacteriol. 1991, 173: 5784-5792.