Biosynthesis of sucrose-6-acetate catalyzed by surfactant-coated Candida rugosa lipase immobilized on sol–gel supports

Bioprocess and Biosystems Engineering - Tập 37 - Trang 813-818 - 2013
Xiang Zhong1, Junqing Qian1, Hui Guo1, Yuanyuan Hu1, Min Liu1
1College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People’s Republic of China

Tóm tắt

Sắc đường-6-acetate là một chất trung gian quan trọng trong quá trình chuẩn bị sucralose (một loại chất tạo ngọt tinh khiết). Trong nghiên cứu của chúng tôi, lipase Candida rugosa được phủ bởi chất hoạt động bề mặt lần đầu tiên được cố định trên các chất hỗ trợ sol-gel. Sau đó, enzyme cố định được sử dụng trong việc tổng hợp chọn lọc vùng của sắc đường-6-acetate thông qua chuyển este giữa sắc đường và acetat vinyl. Kết quả sàng lọc cho thấy Tween 80 là một chất hoạt động bề mặt lý tưởng để phủ lipase cố định trong sol-gel và cho năng suất sắc đường-6-acetate cao nhất. Các yếu tố khác ảnh hưởng đến năng suất trong quá trình chuẩn bị cũng được nghiên cứu. Trong điều kiện tối ưu, năng suất của sắc đường-6-acetate có thể đạt tới 78,68 %, trong khi lipase tự do dễ dàng bị vô hiệu hóa trong dung môi phân cực. Độ ổn định nhiệt và vận hành cũng được cải thiện đáng kể. Lipase được phủ bằng chất hoạt động bề mặt cố định trong sol-gel vẫn ổn định khi nhiệt độ vượt quá 60 °C. Hơn nữa, chúng có thể duy trì hoạt động xúc tác cao sau sáu chu kỳ tái chế. Chiến lược này là kinh tế, thuận tiện và đầy hứa hẹn cho ngành thực phẩm.

Từ khóa

#sắc đường-6-acetate #lipase Candida rugosa #chất hoạt động bề mặt #cố định enzyme #tổng hợp chọn lọc vùng #sucralose

Tài liệu tham khảo

Ferrer M, Soliveri J, Plou FJ (2005) Synthesis of sugar esters in solvent mixtures by lipase from Thermomyces lanuginosus and Candida Antarctica B, and their antimicrobial properties. Enzym Microb Technol 36:391–398 Hill K, Rhode O (1999) Sugar-based surfactants for consumer products and technical applications. Eur J Lipid Sci Technol 101:25–33 Vlahov IR, Vlahova PI, Linhardt RJ (1997) Regioselective synthesis of sucrose monoesters as surfactants. J Carbohydr Chem 16:1–10 Han YW, Liu GM, Huang DY, Qiao BJ, Chen LP, Guan LH, Mao DB (2011) Study on the synthesis of sucrose-6-acetate catalyzed by fructosyltransferase from Aspergillus oryzae. New Biotechnol 28:14–18 Sabeder S, Habulin M, Knez Z (2006) Lipase-catalyzed synthesis of fatty acid fructose esters. J Food Eng 77:880–886 Ha SH, Hiep NM, Lee SH, Koo YM (2010) Optimization of lipase-catalyzed glucose ester synthesis in ionic liquids. Bioprocess Biosyst Eng 33:63–70 Zhao X, Wei D, Song Q, Zhang M (2007) Study of ibuprofen glucopyranoside derivative synthesis by Candida Antarctica lipase in organic solvent. Prep Biochem Biotechnol 37:27–34 Shi YG, Li JR, Chu YH (2011) Enzyme-catalyzed regioselective synthesis of sucrose-based esters. J Chem Technol Biotechnol 86:1457–1468 Li GY, Cai YJ, Hao ZK, Liao XR (2011) Synthesis of sucrose acetate using a solvent-stable serine protease from Serratia sp. SYBC H Eng Life Sci 11:615–619 Kennedy JF, Kumar H, Panesar PS, Marwaha SS, Goyal R, Parmar A, Kaur S (2006) Enzyme-catalyzed regioselective synthesis of sugar esters and related compounds. J Chem Technol Biotechnol 81:866–876 Ferrer M, Cruces MA, Bernabe M, Ballesteros A, Plou FJ (1999) Lipase-catalyzed regioselective acylation of sucrose in two-solvent mixtures. Biotechnol Bioeng 65:10–16 Ritthitham S, Wimmer R, Pedersen LH (2011) Polar co-solvents in tertiary alcohols effect initial reaction rates and regio-isomeric ratio ranging from 1.2 to 2.2 in a lipase catalysed synthesis of 6-O- and 6′-O-stearoyl sucrose. Process Biochem 46:931–935 Weber HK, Stecher H, Faber K (1995) Sensitivity of microbial lipases to acetaldehyde formed by acyl-transfer reactions from vinyl esters. Biotechnol Lett 17:803–808 Berger B, Faber K (1991) ‘Immunization’ of lipase against acetaldehyde emerging in acyl transfer reactions from vinyl acetate. J Chem Soc, Chem Commun 17:1198–1200 Goto M, Kamiya N, Miyata M, Nakashio F (1994) Enzymatic esterification by surfactant-coated lipase in organic media. Biotechnol Progr 10:263–268 Huang SY, Chang HL, Goto M (1998) Preparation of surfactant-coated lipase for the esterification of geraniol and acetic acid in organic solvents. Enzym Microb Technol 22:552–557 Hsieh HJ, Nair GR, Wu WT (2006) Production of ascorbyl palmitate by surfactant-coated lipase in organic media. J Agric Food Chem 54:5777–5781 Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol–gel materials. J Mater Chem 16:1013–1030 Vila-Real H, Alfaia AJ, Calado AR, Ribeiro MHL (2010) Improvement of activity and stability of soluble and sol–gel immobilized naringinase in co-solvent systems. J Mol Catal B Enzym 91:91–101 Yilmaz E (2012) Enantioselective enzymatic hydrolysis of racemic drugs by encapsulation in sol–gel magnetic sporopollenin. Bioprocess Biosyst Eng 35:493–502 Yang G, Wu JP, Xu G, Yang LR (2009) Improvement of catalytic properties of lipase from Arthrobacter sp. by encapsulation in hydrophobic sol–gel materials. Bioresour Technol 100:4311–4316 Balamurugan A, Kannan S, Rajeswari S (2003) Synthesis of hydroxyapatite on silica gel surface by using glycerin as a drying control chemical additive. Mater Lett 57:1244–1250 Desimone MF, Matiacevich SB, Buera MP, Diaz LE (2008) Effects of relative humidity on enzyme activity immobilized in sol–gel-derived silica nanocomposites. Enzym Microb Technol 42:583–588 Lu SY, Jiang SL, Qian JQ, Guo H (2011) A new trypsin affinity monolithic capillary column prepared from glycerylsilane precursor through sol–gel method. J Liq Chromatogr Relat Technol 34:690–704 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 Kamiya N, Goto M, Nakashio A (1995) Surfactant-coated lipase suitable for the enzymatic resolution of menthol as a biocatalyst in organic media. Biotechnol Progr 11:270–275 Rodgers LE (2005) Effect of sol–gel encapsulation on lipase structure and function: a small angle neutron scattering study. J Sol Gel Sci Technol 33:65–69 Yi YY, Neufeld R, Kermasha S (2007) Controlling sol–gel properties enhancing entrapped membrane protein activity through doping additives. J Sol Gel Sci Technol 43:161–170 Shalev M, Miriam A (2011) Sol–gel entrapped levonorgestrel antibodies: activity and structural changes as a function of different polymer formats. Materials 4:469–486 Mohidem NA, Mat HB (2012) Catalytic activity and stability of laccase entrapped in sol–gel silica with additives. J Sol Gel Sci Technol 61:96–103 Nirprit SD, Jagdeep K (2002) Immobilization, stability and esterification studies of a lipase from a Bacillus sp. Biotechnol Appl Biochem 36:7–12 Hwang ET, Gu MB (2013) Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 13:49–61 Palomo JM (2009) Modulation of enzymes selectivity via immobilization. Curr Org Synth 6:1–14