Biosynthesis, characterization, and in vitro assessment on cytotoxicity of actinomycete-synthesized silver nanoparticles on Allium cepa root tip cells

Sreenivasa Nayaka1, Bidhayak Chakraborty1, Meghashyama Prabhakara Bhat1, Shashiraj Kareyallappa Nagaraja1, Dattatraya Airodagi1, Pallavi Sathyanarayana Swamy1, Muthuraj Rudrappa1, Halaswamy Hiremath1, Dhanyakumara Shivapoojar Basavarajappa1, Bharati Kanakannanavar1
1P.G. Dept. of Studies in Botany, Karnatak University, Dharwad, Karnataka, 580003, India

Tóm tắt

Tóm tắt Điều kiện nền

Sự sản xuất công nghiệp nanoparticle bạc (AgNPs) và các ứng dụng thương mại của nó đang gia tăng đáng kể trong thời gian gần đây, dẫn đến việc phát thải AgNP vào môi trường và làm tăng khả năng ô nhiễm cũng như các tác động tiêu cực của chúng lên hệ sinh thái sống. Dựa trên điều này, nghiên cứu hiện tại được thực hiện để đánh giá độc tính tế bào in vitro của AgNPs tổng hợp từ actinomycete trên các tế bào đầu rễ Allium cepa (A. cepa). Một phương pháp tổng hợp xanh đã được áp dụng để tiến hành biosynthesis AgNP từ Streptomyces sp. NS-33. Tuy nhiên, các phân tích hình thái, sinh lý, sinh hóa và phân tử đã được tiến hành để xác định chủng NS-33. Sau đó, các AgNP đã được tổng hợp sẽ được đặc trưng và thực hiện hoạt động kháng khuẩn chống lại các vi khuẩn gây bệnh. Cuối cùng, hoạt động độc tế bào được đánh giá trên các tế bào đầu rễ A. cepa.

Kết quả

Kết quả cho thấy sự tổng hợp AgNP có hình dạng cầu và đa phân tán với đỉnh phổ UV-visible (UV-Vis.) đặc trưng tại 397 nm và kích thước trung bình là 32.40 nm. Phép phân tích quang phổ phân tán năng lượng (EDS) cho thấy sự hiện diện của bạc, trong khi các nghiên cứu biến đổi Fourier hồng ngoại (FTIR) chỉ ra sự có mặt của nhiều nhóm chức năng khác nhau. Mối quan hệ phát sinh loài của Streptomyces sp. NS-33 được tìm thấy với Streptomyces luteosporeus thông qua giải trình tự gen. Một tiềm năng kháng khuẩn tốt của AgNPs được quan sát thấy chống lại hai loại vi khuẩn gây bệnh. Về độc tính tế bào, chỉ số phân bào (MI) giảm dần và các dị dạng nhiễm sắc thể gia tăng được quan sát cùng với sự tăng dần nồng độ AgNPs.

Kết luận

Do đó, việc phát thải AgNP vào môi trường phải được ngăn chặn, để tránh gây hại cho cây trồng và các vi sinh vật có lợi khác.

Từ khóa


Tài liệu tham khảo

Feng XZ, Guo ZL, Wei S, Sangiliyandi G (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17:1534. https://doi.org/10.3390/ijms17091534

Sang HL, Bong HJ (2019) Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 20:865. https://doi.org/10.3390/ijms20040865

Veera BN, Jahnavi A, Rama K, Manisha RD, Rajkiran B, Pratap RMP (2013) Green synthesis of plant mediated silver nanoparticles using Withania somnifera leaf extract and evaluation of their antimicrobial activity. Int J Adv Res 1:307–313

Chen X, Schluesener HJ (2008) Nano-silver: a nanoproduct in medical application. Toxicol Lett 176:1–12. https://doi.org/10.1016/j.toxlet.2007.10.004

Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002

Sahayaraj K, Rajesh S (2011) Bionanoparticles: Synthesis and antimicrobial applications. In: Mendez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances, 1st edn. Formatex Research Center, Spain

Khwaja SS, Azamal H, Rifaqat AKR (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16:14. https://doi.org/10.1186/s12951-018-0334-5

Javed I, Banzeer AA, Tariq M, Safia H, Akhtar M, Sobia K (2019) Green synthesis and characterizations of nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl Organometal Chem 33:e4950. https://doi.org/10.1002/aoc.4950

Neelu C (2018) In: Maaz K (ed) Silver nanoparticles: synthesis, characterization and applications, silver nanoparticles - fabrication, characterization and applications. IntechOpen. https://doi.org/10.5772/intechopen.75611

Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G (2013) Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria Vibrio alginolyticus. J Nanosci Nanotechnol 3:21–25

Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–599. https://doi.org/10.1016/j.tibtech.2016.02.006

Gokulakrishnan R, Ravikumar S, Raj JA (2012) In vitro antibacterial potential of metal oxide nanoparticles against antibiotic resistant bacteria pathogens. Asian Pac J Trop Disease 2:411–413. https://doi.org/10.1016/S2222-1808(12)60089-9

Nasrollahi KH, Paurshamsian MP (2011) Antifungal activity of silver nanoparticles on some of fungi. Int J Nano Dim 1:233–239

Reza GH, Akbar SA, Attar H, Rezayat SSM (2011) Biological and non-biological methods for silver nanoparticles synthesis. Chem Biochem Eng Q 25:317–326

Patrycja G, Magdalena W, Avinash PI, Indarchand G, Hanna D, Mahendra R (2014) Biogenic synthesis of metal nanoparticles from Actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 98:8083–8097. https://doi.org/10.1007/s00253-014-5953-7

Rajagopal G, Palaniappan S, Kannan S (2018) Marine actinobacteria: a concise account for young researchers. Indian J Geo-Mar Sci 47:541–547

Swati S, Abhay BF, Asha C (2019) Bioprospection of marine Actinomycetes: recent advances, challenges and future perspectives. Acta Oceanologica Sinica 38:1–17. https://doi.org/10.1007/s13131-018-1340-z

Ouchari L, Boukeskasse A, Bouizgarne B, Ouhdouch Y (2019) Antimicrobial potential of Actinomycetes isolated from unexplored hot Merzouga desert and their taxonomic diversity. Biology Open 8:bio035410. https://doi.org/10.1242/bio.035410

Kekuda TRP, Shobha KS, Onkarappa R (2010) Studies on antioxidant and antihelmintic activity of two Streptomyces species isolated from Western Ghat soils of Agumbe, Karnataka. J Pharm Res 3:26–29

Ravikumar S, Inbaneson SJ, Uthiraselvam M, Priya SR, Ramu A, Banerjee MB (2011) Diversity of endophytic Actinomycetes from Karangkadu mangrove ecosystem and its antibacterial potential against bacterial pathogens. J Pharm Res 4:294–296

Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318. https://doi.org/10.1016/S0927-7765(02)00174-1

Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes-a review. Colloids Surf B Biointerfaces 121:474–483. https://doi.org/10.1016/j.colsurfb.2014.05.027

Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494. https://doi.org/10.1016/j.chemosphere.2010.10.023

Taofeek AY, Musibau AA, Akeem A, Agbaje L, Tesleem BA, Iyabo CO, Samuel OO, Adewumi AA (2017) Safety evaluation of green synthesized Cola nitida pod, seed and seed shell extracts mediated silver nanoparticles (AgNPs) using Allium cepa assay. J Taibah Univ Sci 11:895–909. https://doi.org/10.1016/j.jtusci.2017.06.005

Taofeek AY, Musibau AA, Agbaje L, Tesleem BA, Iyabo CO, Jelili AB, Suliyat AA, Adewumi AA (2017) Cytogenotoxicity potentials of cocoa pod and bean mediated green synthesized silver nanoparticles on Allium cepa cells, Caryologia. Int J Cytol Cytosyst Cytogenet 70:366–377. https://doi.org/10.1080/00087114.2017.1370260

Rajeshwari A, Suresh S, Natarajan C, Amitava M (2016) Toxicity evaluation of gold nanoparticles using an Allium cepa bioassay. RSC Adv 6:24000–24009. https://doi.org/10.1039/C6RA04712B.

Liman R, Gokce UG, Akyil D, Eren Y, Konuk M (2012) Evaluation of genotoxic and mutagenic effects of aqueous extract from aerial parts of Linaria genistifolia sub sp. genistifolia. Rev Bras Farmacogn 22:541–548. https://doi.org/10.1590/S0102-695X2012005000028

Azharuddin D, Tarikere CT (2018) Characterization and cytotoxic effect of biogenic silver nanoparticles on mitotic chromosomes of Drimia polyantha (Blatt. & McCann) Stearn. Toxicol Rep 5:910–918. https://doi.org/10.1016/j.toxrep.2018.08.018

Liman R, Akyil D, Eren Y, Konuk M (2010) Testing of the mutagenicity and genotoxicity of metolcarb by using both Ames/Salmonella and Allium test. Chemosphere 80:1056–1061. https://doi.org/10.1016/j.chemosphere.2010.05.011

Ranjita D, Wahengbam R, Rictika D, Hridip KS, Debajit T (2018) Antimicrobial potentiality of actinobacteria isolated from two microbiologically unexplored forest ecosystems of Northeast India. BMC Microbiol 18:71. https://doi.org/10.1186/s12866-018-1215-7

Sarvanakumar P, John PPR, Veeramuthu D, Savarimuthu I (2012) Antibacterial activity of some Actinomycetes from Tamil Nadu, India. Asian Pac J Trop Biomed 2:936–943. https://doi.org/10.1016/S2221-1691(13)60003-9

Sohan S, Arnab P, Abhrajyoti G, Maitree B (2015) Antimicrobial activities of Actinomycetes isolated from unexplored regions of Sundarbans mangrove ecosystem. BMC Microbiol 15:170. https://doi.org/10.1186/s12866-015-0495-4

Priyanka S, Mohan CK, Debajit T (2016) Broad spectrum antimicrobial activity of forest-derived soil actinomycete, Nocardia sp. PB-52. Front Microbiol 7:347. https://doi.org/10.3389/fmicb.2016.00347

Marzan LW, Mehjabeen H, Sohana AM, Yasmin A, Masudul ACAM (2017) Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: Bioremediation viewpoint. Egypt J Aquat Res 43:65–74. https://doi.org/10.1016/j.ejar.2016.11.002

Sukanya MK, Saju KA, Praseetha PK, Sakthivel G (2013) Therapeutic potential of biologically reduced silver nanoparticles from actinomycete cultures. J Nanosci 2013:ID940719. https://doi.org/10.1155/2013/940719.

Kumar S, Stecher G, Tamura K (2016) MEGA 7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

Abdullah ADN, Kareem MGA, Mariadhas VA (2018) Characterization of silver nanomaterials derived from marine Streptomyces sp. Al-Dhabi-87 and its in vitro application against multidrug resistant and extended-spectrum beta-lactamase clinical pathogens. Nanomaterials 8:279. https://doi.org/10.3390/nano8050279

Madakka M, Jayaraju N, Rajesh N (2018) Mycosynthesis of silver nanoparticles and their characterization. Methods X 5:20–29. https://doi.org/10.1016/j.mex.2017.12.003

Shkryl YN, Veremeichik GN, Kamenev DG, Gorpenchenko TY, Yugay YA, Mashtalyar DV, Nepomnyaschiy AV, Avramenko TV, Karabtsov AA, Ivanov VV, Bulgakov VP, Gnedenkov SV, Kulchin YN, Zhuravlev YN (2017) Green synthesis of silver nanoparticles using transgenic Nicotiana tabacum callus culture expressing silicatein gene from marine sponge Latrunculia oparinae. Artif Cells Nanomed Biotechnol 46:1646–1658. https://doi.org/10.1080/21691401.2017.1388248

Banala RR, Nagati VB, Karnati PR (2015) Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saud J Biol Sci 22:637–644. https://doi.org/10.1016/j.sjbs.2015.01.007

Majeed S, Abdullah MSB, Nanda A, Ansari MT (2016) In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999). J Taibah Univ Sci 10:614–620. https://doi.org/10.1016/j.jtusci.2016.02.010

Yvonne M, Evi S (2019) Actinomycetes: the antibiotics producers. Antibiotics 8:105. https://doi.org/10.3390/antibiotics8030105

Sreenivasa N, Bidhayak C, Pallavi SS, Meghashyama PB, Dattatraya A, Dhanyakumara SB, Muthuraj R, Halaswamy H, Shashiraj KN, Chaitra M (2019) Isolation, characterization, and functional groups analysis of Pseudoxanthomonas indica RSA-23 from rhizosphere soil. J Appl Pharm Sci 9:101–106. https://doi.org/10.7324/JAPS.2019.91113

Locci R (1989) Streptomycetes and related genera. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 2451–2493

Cox MJ, Cookson WOCM, Moffatt MF (2013) Sequencing the human microbiome in health and disease. Hum Mol Genet 22:88–94. https://doi.org/10.1093/hmg/ddt398

Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycetes, Rhodococcus species. Nanotechnol 14:824. https://doi.org/10.1088/0957-4484/14/7/323

Saminathan K (2015) Biosynthesis of silver nanoparticles using soil actinomycetes Streptomyces sp. Int J Curr Microbiol Appl Sci 4:1073–1083

Karthik L, Kumar G, Vishnu Kirthi A, Rahuman AA, Rao VB (2014) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37:261–267. https://doi.org/10.1007/s00449-013-0994-3

Asma S, Hamid S, Mehwish I, Syed ZH, Afshan K, Roheena A, Saima S, Shagufta N, Faiza S, Ayesha A, Asma C (2019) Size-controlled production of silver nanoparticles by Aspergillus fumigatus BTCB10: likely antibacterial and cytotoxic effects. J Nanomater 2019:ID5168698. https://doi.org/10.1155/2019/5168698

Ragaa AH, Mervat HH, Rasha AA, Salwa SB (2019) Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep 9:13071. https://doi.org/10.1038/s41598-019-49444-y

Masum MMI, Siddiqa MM, Ali KA, Zhang Y, Abdallah Y, Ibrahim E, Qiu W, Yan C, Li B (2019) Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Front Microbiol 10:820. https://doi.org/10.3389/fmicb.2019.00820

Mehta BK, Meenal C, Shrivastava BD (2017) Green synthesis of silver nanoparticles and their characterization by XRD. J Phy Conf Series 836:012050. https://doi.org/10.1088/1742-6596/836/1/012050

Mohammed RS, Mujeeb K, Mufsir K, Abdulrahman A-W, Hamad ZA, Mohammed RHS, Jilani PS, Anis A, Adeem M, Merajuddin K, Syed FA (2018) Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability 10:913. https://doi.org/10.3390/su10040913

Sondi I, Salopek SB (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182. https://doi.org/10.1016/j.jcis.2004.02.012

Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed 13:3311–3327. https://doi.org/10.2147/ijn.s165125

Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Brahma BP (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol inVitro 25:1097–1105. https://doi.org/10.1016/j.tiv.2011.03.008

Nair PMG, Park SY, Lee SW, Choi J (2011) Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. Aquat Toxicol 101:31–37. https://doi.org/10.1016/j.aquatox.2010.08.013

Hilada N, Jasmin M, Azra M, Kemajl K (2013) Chromosomal and nuclear alterations in root tip cells of Allium Cepa L. induced by alprazolam. Med Arh 67:388–392. https://doi.org/10.5455/medarh.2013.67.388-392

Ghamery EAA, Kholy EMA, Yousser EMAA (2003) Evaluation of cytological effects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L. 537:29–41. https://doi.org/10.1016/s1383-5718(03)00052-4

Rajeshwari A, Kavitha S, Alex SA, Kumar D, Mukherjee A, Chandrasekaran N, Mukherjee A (2015) Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip-effects of oxidative stress generation and biouptake. Environ Sci Pollut Res 22:11057–11060. https://doi.org/10.1007/s11356-015-4355-4

Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222. https://doi.org/10.1021/es9015553

Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem110:167-177. https://doi.org/10.1016/j.plaphy.2016.06.015.

Guangshu Z, Katherine SW, David WP, Pedro JJA, Jerald LS (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1:146–151. https://doi.org/10.1021/ez400202b

Attwood ST, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D, Bertsch PM, Newman LA (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicol 6:353–360. https://doi.org/10.3109/17435390.2011.579631