Biosynthesis and biology of mammalian GPI-anchored proteins

Open Biology - Tập 10 Số 3 - 2020
Taroh Kinoshita1
1Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan

Tóm tắt

At least 150 human proteins are glycosylphosphatidylinositol-anchored proteins (GPI-APs). The protein moiety of GPI-APs lacking transmembrane domains is anchored to the plasma membrane with GPI covalently attached to the C-terminus. The GPI consists of the conserved core glycan, phosphatidylinositol and glycan side chains. The entire GPI-AP is anchored to the outer leaflet of the lipid bilayer by insertion of fatty chains of phosphatidylinositol. Because of GPI-dependent membrane anchoring, GPI-APs have some unique characteristics. The most prominent feature of GPI-APs is their association with membrane microdomains or membrane rafts. In the polarized cells such as epithelial cells, many GPI-APs are exclusively expressed in the apical surfaces, whereas some GPI-APs are preferentially expressed in the basolateral surfaces. Several GPI-APs act as transcytotic transporters carrying their ligands from one compartment to another. Some GPI-APs are shed from the membrane after cleavage within the GPI by a GPI-specific phospholipase or a glycosidase. In this review, I will summarize the current understanding of GPI-AP biosynthesis in mammalian cells and discuss examples of GPI-dependent functions of mammalian GPI-APs.

Từ khóa


Tài liệu tham khảo

UniProt C. 2015 UniProt: a hub for protein information. Nucleic Acids Res. 43 (Database issue), D204-D212. (doi:10.1093/nar/gku989)

10.1042/bj2930633

10.1074/jbc.272.13.8791

10.1038/333269a0

10.1016/0092-8674(92)90189-J

10.1038/42408

10.1038/29563

10.1073/pnas.91.25.12130

10.1074/jbc.273.2.1150

10.1038/nchembio.1028

10.1038/nchembio.1495

10.1016/j.cell.2008.11.032

10.1016/j.cell.2015.03.048

10.1126/science.1719635

10.1083/jcb.200609174

10.1083/jcb.200609175

10.1073/pnas.85.24.9557

10.1034/j.1600-0854.2002.31106.x

10.1242/jcs.148056

10.1194/jlr.R062760

10.1016/j.bbamem.2015.12.018

10.1002/1873-3468.13573

10.1016/j.cmet.2010.04.016

10.1038/ncomms3123

10.1038/ncomms7255

10.1126/science.1231921

10.7554/eLife.23649

10.1083/jcb.201605121

10.1073/pnas.1222166110

10.1016/S0021-9258(19)49819-0

10.1016/S0021-9258(17)35308-5

10.1093/protein/11.12.1155

10.1016/j.jprot.2016.03.008

10.1194/jlr.R070201

10.1074/jbc.274.23.16479

10.1074/jbc.270.33.19576

10.1016/j.celrep.2015.05.026

10.1371/journal.pone.0138553

10.1016/j.cell.2013.02.003

10.1242/jcs.204396

10.1083/jcb.129.3.629

10.1002/j.1460-2075.1996.tb01048.x

10.1073/pnas.94.23.12580

10.1016/S0014-5793(97)01576-7

10.1093/emboj/20.15.4088

10.1091/mbc.e02-12-0794

10.4161/cc.28761

10.1074/jbc.M300586200

10.1126/science.7680492

10.1006/bbrc.1996.1332

10.1016/S0021-9258(19)36842-5

10.1093/emboj/17.4.877

10.1093/emboj/19.16.4402

10.1091/mbc.e05-08-0743

10.1074/jbc.274.26.18582

10.1074/jbc.272.25.15834

10.1042/bj3390185

10.1091/mbc.e03-03-0193

10.1074/jbc.M110.193490

10.1194/jlr.M700095-JLR200

10.1073/pnas.0904762106

10.1093/emboj/20.1.250

10.1074/jbc.M413867200

10.1091/mbc.e04-09-0802

10.1074/jbc.274.49.35099

10.1002/j.1460-2075.1996.tb00800.x

10.1074/jbc.M413755200

10.1016/S0021-9258(18)53122-7

10.1074/jbc.M405081200

10.1080/15384101.2018.1456294

10.1074/jbc.M313755200

10.1074/jbc.270.11.6088

10.1016/S0021-9258(18)37349-6

10.4049/jimmunol.144.3.1030

10.1016/j.cell.2009.08.040

10.1083/jcb.201012074

10.1242/jcs.062950

10.1074/jbc.M114.568311

10.1091/mbc.e06-10-0885

10.1091/mbc.e05-11-1005

Ferguson MAJ, Hart GW, Kinoshita T. 2015 Glycosylphosphatidylinositol anchors. In Essentials of glycobiology, 3rd edition (eds A Varki et al.), pp. 137-150. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

10.1038/s41467-017-02799-0

10.1021/bi00136a600

10.1074/jbc.270.39.22946

10.1074/jbc.M115.672394

Colley KJ, Varki A, Kinoshita T. 2015 Cellular organization of glycosylation. In Essentials of glycobiology, 3rd edition (eds A Varki et al.), pp. 41-49. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

10.1007/s00018-015-2066-0

10.1038/s41467-020-14678-2

10.1074/jbc.272.40.24794

10.1074/jbc.273.21.12770

10.3389/fcimb.2017.00248

10.1016/S0021-9258(19)37001-2

10.1074/jbc.270.41.24150

10.1074/jbc.271.22.12879

10.1074/jbc.275.10.7378

10.1074/jbc.RA119.007472

10.1017/S0031182000068220

10.1172/JCI123501

10.1091/mbc.e06-08-0715

10.1091/mbc.e06-02-0104

10.1091/mbc.e07-05-0482

10.1111/j.1365-2958.2007.05883.x

10.1091/mbc.e07-08-0740

10.1074/jbc.C000710200

10.1074/jbc.M206624200

10.1002/yea.3138

10.1016/j.celrep.2014.12.015

Palmer EE et al. 2016 Neuronal deficiency of ARV1 causes an autosomal recessive epileptic encephalopathy. Hum. Mol. Genet. 25, 3042-3054.

10.1091/mbc.e07-03-0258

10.1016/j.cub.2014.11.039

10.1091/mbc.e14-06-1033

10.1194/jlr.R063313

10.1091/mbc.e08-01-0087

10.1016/j.cell.2014.06.026

10.1083/jcb.201602010

10.7554/eLife.46740

10.1083/jcb.201706135

10.1091/mbc.e05-05-0443

10.1091/mbc.e11-04-0294

10.1073/pnas.95.22.13221

10.1111/febs.12699

10.1038/nn1922

10.1016/j.neuron.2011.07.028

10.1186/1745-6150-6-37

10.1242/dev.128.22.4501

10.1074/jbc.M702713200

10.1038/27215

10.1095/biolreprod.113.112888

10.1038/nm1179

10.1126/science.2443973

10.1073/pnas.85.4.980

10.1006/bbrc.1998.9542

10.1042/bj3420449

10.1152/ajpendo.00319.2018

10.1016/j.cmet.2019.05.023

10.1111/tra.12707

10.1038/nrdp.2017.28

10.1016/0092-8674(93)90250-T

10.1073/pnas.96.9.5209

10.1038/nm1410

10.1038/ng.653

10.1016/j.ajhg.2012.02.010

10.1016/j.ajhg.2012.05.004

10.1136/jmg.2010.087114

10.1016/j.ajhg.2011.11.031

10.1136/jmedgenet-2013-102156

10.1136/jmedgenet-2016-104202

10.1093/hmg/ddx077

10.1016/j.ajhg.2016.02.007

10.1016/j.ajhg.2019.06.009

10.1016/j.ajhg.2019.05.019

10.1002/humu.23420

10.1136/jmedgenet-2013-101654

10.1093/hmg/ddu030

10.1093/hmg/ddv331

10.1016/j.ajhg.2017.09.020

10.1016/j.ajhg.2018.08.014

10.1371/journal.pgen.1004320

10.1016/j.ajhg.2013.03.008

10.1016/j.ajhg.2013.03.011

10.1016/j.ajhg.2013.12.012

10.1212/WNL.0000000000000389

10.1182/blood-2013-01-481499

Kawamoto M, Murakami Y, Kinoshita T, Kohara N. 2018 Recurrent aseptic meningitis with PIGT mutations: a novel pathogenesis of recurrent meningitis successfully treated by eculizumab. BMJ Case Rep. 2018, 225910. (doi:10.1136/bcr-2018-225910)

10.1038/sj.onc.1203728

10.1172/JCI66113

Nozaki M, Ohishi K, Yamada N, Kinoshita T, Nagy A, Takeda J. 1999 Developmental abnormalities of glycosylphosphatidylinositol-anchor-deficient embryos revealed by Cre/loxP system. Lab. Invest. 79, 293-299.

10.1186/s13059-015-0681-6

10.1186/s13073-017-0510-5

10.1111/cge.13425

10.1038/ng0995-45

10.1212/WNL.0b013e3182a8411a

10.1002/humu.23219

10.1016/j.cell.2019.04.037

10.1007/s10048-014-0408-y

10.1016/j.braindev.2017.06.005