Biostimulant-induced drought tolerance in grapevine is associated with physiological and biochemical changes
Tóm tắt
In this research, the effects of exogenous application of certain biostimulants [amino acid (AA), humic acid (HA), fulvic acid (FA), and seaweed extract (SE)] on the fruit yield and quality, leaf mineral contents, and some critical physio-chemical characteristics of grapevine (
Drought stress caused a remarkable reduction in the weight of 20 berries and fruit yield, and meanwhile a marked increase in the titratable acidity (TA) and total soluble solid (TSS) content of fruits. Application of biostimulants, especially SE, enhanced the weight of 20 berries, fruit yield, and TSS content, and decreased TA in fruits of DS vines. Although drought stress had a negative effect on the chlorophyll content of grapevine, this effect was alleviated by the application of biostimulants, especially SE. Moreover, drought stress made the accumulation of abscisic acid (ABA), proline, total phenol, and soluble carbohydrates, the level of hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activity of guaiacol peroxidase (GPX) and catalase (CAT) enzymes increased in leaves. Application of biostimulants, especially SE, further increased the accumulation of ABA, proline, total phenol, and soluble carbohydrates and the activity of the antioxidant enzymes, but reduced the level of MDA and H2O2 in DS vines. Under drought stress conditions, concentrations of N, P, and K increased, and concentrations of Fe and Zn decreased; however, DS grapevines treated with biostimulants and especially SE accumulated a higher level of these mineral nutrients than CON vines.
In sum, as evidenced by the study results, biostimulants have a high potential for promoting fruit yield and quality of grapevine in drought-prone regions.
Từ khóa
Tài liệu tham khảo
Anjum SA, Wang L, Farooq M, Xue L, Ali S. Fulvic acid application improves the maize performance under well-watered and drought conditions. J Agron Crop Sci. 2011;197:409–17.
Ashraf M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv. 2009;27:84–93. https://doi.org/10.1016/j.biotechadv.2008.09.003.
Atmani D, Chaher N, Berboucha M, Ayouni K, Lounis H, Boudaoud H, Debbache N, Atmani D. Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chem. 2009;112(2):303–9. https://doi.org/10.1016/j.foodchem.2008.05.077.
Aydin A, Kant C, Turan M. Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr J Agric Res. 2012;7:1073–86.
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies. Plant Soil. 1973;39:205–7. https://doi.org/10.1007/BF00018060.
Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B. Seaweed extracts as biostimulants in horticulture. Sci Hortic. 2015;196:39–48.
Bayoumi YA. Improvement of postharvest keeping quality of white pepper fruits (Capsicum annuum L.) by hydrogen peroxide treatment under storage conditions. Acta Biol Szeged. 2008;52:7–15.
Beheshti Rooy SH, Hosseini Salekdeh G, Ghabooli M, Gholami M, Karimi R. Cold-induced physiological and biochemical responses of three grapevine cultivars differing in cold tolerance. Acta Physiol Plant. 2017;39:264. https://doi.org/10.1007/s11738-017-2561-z.
Berbara RLL, García AC. Humic substances and plant defense metabolism. In: Ahmad P, Wani MR, editors. Physiological mechanisms and adaptation strategies in plants under changing environment. New York: Springer Science+Business Media; 2014. p. 297–319.
Bergmeyer N. Methoden der enzymatischen analyse. Berlin: Academic Verlag; 1970.
Bhusala N, Han SG, Yoon TM. Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus × domestica Borkh.). Sci Hortic. 2019;246:535–43.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle dye binding. Ann Biochem. 1976;72:248–52.
Bulgari R, Franzoni G, Ferrante A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy. 2019;9:306. https://doi.org/10.3390/agronomy9060306.
de Vasconcelos ACF, Zhang X, Ervin EH, de Kiehl JC. Enzymatic antioxidant responses to biostimulants in maize and soybean subjected to drought. Sci Agricola. 2009;66(3):395–402.
Drobek M, Frac M, Cybulska J. Plant biostimulants: importance of the quality and yield of horticultural crops and improvement of plant tolerance to abiotic stress—a review. Agronomy. 2019;9:335. https://doi.org/10.3390/agronomy9060335.
Elansary HO, Skalicka-Woźniak K, King IW. Enhancing stress growth traits as well as phytochemical and antioxidant contents of Spiraea and Pittosporum under seaweed extract treatments. Plant Physiol Biochem. 2016;105:310–20. https://doi.org/10.1016/j.plaphy.2016.05.024.
El-Garhy AM. Physiological studies on tolerance of some varieties of faba bean plants under least water requirements. Ph. D. Thesis, Agric., Botany Dept., Faculty of Agric., Minufiya Univ., Shebin El-Kom, Egypt; 2002.
Fallahi HR, Ghorbany M, Samadzadeh A, Aghhavani-Shajari M, Asadian AH. Influence of arbuscular mycorrhizal inoculation and humic acid application on growth and yield of Roselle (Hibiscus sabdariffa L.) and its mycorrhizal colonization index under deficit irrigation. Int J Hortic Sci Technol. 2016;3:113–28. https://doi.org/10.22059/ijhst.2016.62912.
Fallahi HR, Taherpour R, Aghhavani-Shajari M, Soltanzadeh MG. Effect of super absorbent polymer and deficit irrigation on water use efficiency, growth and yield of cotton. Not Sci Biol. 2015;7(3):338–44.
FAOSTAT. 2017. http://www.faostat.fao.org.
Farahi MH, Aboutaleb A, Eshghi S, Dastyaran M, Yosefi F. Foliar application of humic acid on quantitative and qualitative characteristics of ‘aromas’ strawberry in soilless culture. Agric Commun. 2013;1:13–6.
Ferrara G, Brunetti G. Effects of the times of application of a soil humic acid on berry quality of table grape (Vitis vinifera L.) cv Italia. Span J Agric Res. 2010;8:817–22.
García AC, Berbara RLL, Farías LP, Izquierdo FG, Hernández OL, Campos RH, Castro RN. Humic acids of vermicompost as an ecological pathway to increase resistance of rice seedlings to water stress. Afr J Biotechnol. 2012;11:3125–34. https://doi.org/10.5897/AJB11.1960.
Goñi O, Quille P, O’Connell S. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol Biochem. 2018;126:63–73. https://doi.org/10.1016/j.plaphy.2018.02.024.
Hammad AAR, Osama AM, Ali OAM. Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Ann Agric Sci. 2014;59(1):133–45. https://doi.org/10.1016/j.aoas.2014.06.018.
Heath RL, Packer L. Photo-peroxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189–98.
Jannin L, Arkoun M, Etienne P, Laîné P, Goux D, Garnica M, Fuentes M, San Francisco S, Baigorri B, Cruz F, Houdusse F, Garcia-Mina JM, Yvin JC, Ourry A. Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. Seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. J Plant Growth Regul. 2013;3:31–52. https://doi.org/10.1007/s00344-012-9273-9.
Kok D, Bal E. Effects of foliar seaweed and humic acid treatments on monoterpene profile and biochemical properties of cv. Riesling berry (V. vinifera L.) throughout the maturation period. J Tekirdag Agric Fac. 2016;13(2):67–74.
Köksal AI, Dumanoglu H, Güne N, Yıldırım O, Kadayıfcı A. Effects of different irrigation methods and regimes on vegetative growth, fruit yield and quality of apple trees. J Turk Agric. 1999;23:909–20.
Lichtenthaler HK. Chlorophylls and carotenoids pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350–82. https://doi.org/10.1016/0076-6879(87)48036-1.
Liu C, Cooper RJ, Bowman DC. Humic acid application affects photosynthesis root development and nutrient content of creeping bentgrass. Hortic Sci. 1996;33(6):1023–5.
Liu H, Zhang YH, Yin H, Wang WX, Zhao XM, Du YG. Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress. Plant Physiol Biochem. 2013;62:33–40. https://doi.org/10.1016/j.plaphy.2012.10.012.
Maghsoudi K, Emam Y, Ashraf M, Arvin MJ. Alleviation of field water stress in wheat cultivars by using silicon and salicylic acid applied separately or in combination. Crop Pasture Sci. 2019;70:36–43. https://doi.org/10.1071/CP18213.
Mansori M, Farouk IA, Hsissou D, El Kaoua M. Seaweed extract treatment enhances vegetative growth and antioxidant parameters in water stressed Salvia officinalis L. J Mater Environ Sci. 2019;10(8):756–66.
Masoudi Sadaghiani F, Amini Dehaghi M, Pirzad A, Fotokian MH. Variation in yield and biochemical factors of German chamomile (Matricaria recutita L.) under foliar application of osmolytes and drought stress conditions. J Herbmed Pharmacol. 2019;8(2):90–100. https://doi.org/10.15171/jhp.2019.15.
Mina Z, Lia R, Chena L, Zhang Y, Li Z, Liu M, Ju Y, Fang Y. Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiol Biochem. 2019;135:99–110. https://doi.org/10.1016/j.plaphy.2018.11.037.
Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios I. Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh). Environ Exp Bot. 2006;56:54–62. https://doi.org/10.1016/j.envexpbot.2005.01.002.
Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P. Drought induces oxidative stress in pea plants. Planta. 1994;194(3):346–52. https://doi.org/10.1007/bf00197534.
Murtic S, Oljaca R, Smajic Murtic M, Vranac A, Koleska I, Karic L. Effects of seaweed extract on the growth, yield and quality of cherry tomato under different growth conditions. Acta Agric Slov. 2018;111:315–25.
Nair P, Kandasamy S, Zhang J, Ji X, Kirby C, Benkel B, Hodges MD, Critchley AT, Hiltz D, Prithiviraj B. Transcriptional and metabolomics analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genom. 2012;13:643. https://doi.org/10.1186/1471-2164-13-643.
Norrie J, Keathley JP. Benefits of Ascophyllum nodosum marine plant extract applications to ‘Thompson Seedless’ grape production. Acta Hortic. 2006;727:243–8.
Pennycooke JC, Cox S, Stushnoff C. Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia × hybrida). Environ Exp Bot. 2005;53:225–32.
Rouphael Y, Colla G. Synergistic biostimulatory action: designing the next generation of plant biostimulants for sustainable agriculture. Front Plant Sci. 2018;9:1–24.
Sabir A, Yazar K, Sabir F, Kara Z, Yazici MA, Goksu N. Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci Hortic. 2014;175:1–8. https://doi.org/10.1016/j.scienta.2014.05.021.
Salami H, Shahnooshi N, Thomson K. The economic impacts of drought on the economy of Iran: an integration of linear programming and macro-econometric modelling approaches. Ecol Econ. 2009;68:1032–9.
Salvi L, Cataldo E, Secco S, Mattii GB. Use of natural biostimulants to improve the quality of grapevine production: first results. Acta Hortic. 2016;1148:77–84. https://doi.org/10.17660/ActaHortic.2016.1148.9.
Shao HB, Liang ZS, Shao MA. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Colloids Surf B Biointerfaces. 2006;47:132–9. https://doi.org/10.1016/j.colsurfb.2005.11.028.
Sharma HSS, Fleming C, Selby C, Rao JR, Martin T. Plant biostimulants: a review on the processing of macro algae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol. 2014;26:465–90.
Shukla PS, Shotton K, Norman E, Neily W, Critchley AT, Prithiviraj B. Seaweed extract improve drought tolerance of soybean by regulating stress-response genes. AoB PLANTS. 2018. https://doi.org/10.1093/aobpla/plx051.
Strydom J. The effect of foliar potassium and seaweed products in combination with a leonardite fertigation product on Flame Seedless grape quality. S Afr J Enol Vitic. 2014;35(2):283–91.
Sun M, Peng F, Xiao Y, Yu W, Zhang Y, Gao H. Exogenous phosphatidylcholine treatment alleviates drought stress and maintains the integrity of root cell membranes in peach. Sci Hortic. 2020;259:108821. https://doi.org/10.1016/j.scienta.2019.108821.
Tadayyon A, Nikneshan P, Pessarakli M. Effects of drought stress on concentration of macro- and micro-nutrients in Castor (Ricinus communis L.) plant. J Plant Nutr. 2018;41(3):304–10. https://doi.org/10.1080/01904167.2017.1381126.
Ucar Y, Kadayıfcı A, Aşkın MA, Kankaya A, Şenyiğit U, Yıldırım F. Effects of irrigation frequency on yield and quality parameters in apple cv. “Gala, galaxy.” ErwerbsObstbau. 2016;58:169–75.
Velikova V, Loreto F. The relationship between isoprene emission and thermo-tolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant Cell Environ. 2005;28:318–27.
Wang Y, Liua L, Wang Y, Tao H, Fan J, Zhao Zh, Guo Y. Effects of soil water stress on fruit yield, quality and their relationship with sugar metabolism in ‘Gala’ apple. Sci Hortic. 2019;258:108753. https://doi.org/10.1016/j.scienta.2019.108753.
Yang W, Li P, Guo S, Fan B, Song R, Zhang J, Yu J. Compensating effect of fulvic acid and super-absorbent polymer on leaf gas exchange and water use efficiency of maize under moderate water deficit conditions. Plant Growth Regul. 2017;83:351–60. https://doi.org/10.1007/s10725-017-0297-9.
Yıldırım F, Vural E, Uçar Y, Yıldırım AN. Interaction of crop load and irrigation on yield, fruit size, color and stem-end splitting ratio of apple cv. “Gala, Galaxy.” ErwerbsObstbau. 2015;58:103–11.