Các cơ sở biorthogonal của sóng có hỗ trợ giới hạn

Communications on Pure and Applied Mathematics - Tập 45 Số 5 - Trang 485-560 - 1992
Albert Cohen1, Ingrid Daubechies2, Jean-Christophe Feauveau3
1Université Paris IX Dauphine
2Rutgers University
3MATRA SEP

Tóm tắt

Tóm tắt

Các cơ sở trực chuẩn của các cơ sở sóng có hỗ trợ giới hạn tương ứng với các sơ đồ mã hóa phân tầng có khả năng tái tạo chính xác, trong đó bộ lọc phân tích và tổng hợp trùng nhau. Chúng tôi cho thấy rằng, dưới các điều kiện khá tổng quát, các sơ đồ tái tạo chính xác với các bộ lọc tổng hợp khác với các bộ lọc phân tích tạo ra hai cơ sở Riesz đối ngẫu của các sóng có hỗ trợ giới hạn. Chúng tôi đưa ra các điều kiện cần và đủ cho tính biorthogonal của các hàm tỷ lệ tương ứng, và chúng tôi trình bày các điều kiện đủ cho sự suy giảm của các biến đổi Fourier của chúng. Chúng tôi nghiên cứu tính đều đặn của các cơ sở biorthogonal này. Chúng tôi cung cấp một số họ ví dụ, tất cả các ví dụ đều đối xứng (tương ứng với các bộ lọc "giai điệu tuyến tính"). Đặc biệt, chúng tôi có thể xây dựng các cơ sở sóng biorthogonal đối xứng có tính đều đặn cao được chỉ định trước tùy ý; chúng tôi cũng cho thấy cách xây dựng các cơ sở sóng biorthogonal đối xứng "gần" với một cơ sở trực chuẩn (không đối xứng).

Từ khóa


Tài liệu tham khảo

Antonini M. Barlaud M. Mathieu P. andDaubechies I. Image coding using wavelet transforms IEEE Trans. Image Proc. 1 1992 to appear.

Auscher P. Ondelettes fractales et applications Ph.D. Thesis 1989 Université de Paris IX (Dauphine) France.

10.1007/BF01205550

10.1063/1.528544

Barlaud M. private communication.

10.1109/TCOM.1983.1095851

Cohen A. andDaubechies I. Nonseparable bidimensional wavelet bases submitted toRev. Mat. Iberoamericana.

Cohen A., 1990, Ondelettes, analysis multirésolutions et filtres mirroirs en quadrature, Ann. Inst. H. Poincaré, 7, 439, 10.1016/s0294-1449(16)30286-4

Conze J. P. andRaugi A. Fonctions harmoniques pour un opérteur de transition et applications preprint Dépt. de Mathématique Université de Renness France.

10.1002/cpa.3160410705

10.1109/18.57199

Daubechies I. Orthonormal bases of compactly supported wavelets. Part II: Variations on a theme submitted toSIAM J. Math. Anal.

10.1137/0522089

Daubechies I., 1992, Two‐scale difference equations. Part II: Local regularity, infinite products of matrices and fractals, SIAM J. Math. Anal., 24

Deslauriers G., 1987, Fractals, dimensions non entières et applications, 44

Duffin R. J., 1952, A class of nonharmonic Fourier series, Trans. Am. Math. Soc., 72, 341, 10.1090/S0002-9947-1952-0047179-6

Dyn N. andLevin D. Interpolating subdivision schemes for the generation of curves and surfaces preprint Math. Dept. Tel Aviv University 1989.

10.1063/1.527388

DeVore R. A. Jawerth B. andPopov V. Compression of wavelet decompositions preprint Dept. of Math. University of South Carolina 1990.

Feauveau J.‐C. Analyse multirésolution par ondelettes non orthogonales et bancs de filtres numériques Ph.D. Thesis Université de Paris Sud 1990.

10.1016/0022-1236(90)90137-A

10.1063/1.528688

10.1063/1.529093

Lemarié P. G., 1988, Ondelettes à localisation exponentielle, J. Math. Pures et Appl., 67, 227

10.2307/2001373

Meyer Y. Principe d'incertitude bases hilbertiennes et algèbres d'opérateurs Séminaire Bourbaki 1985–1986 No. 662.

Meyer Y., 1990, Ondelettes et opérateurs

Meyer Y. Ondelettes fonctions splines et analyses graduées Lectures given at the University of Torino Italy 1986.

Micchelli C. andPrautzsch H. Uniform refinement of curves pp.841–870in: Linear Algebra and Applications 114–115 1989.

10.1109/TASSP.1986.1164832

10.1109/TASSP.1987.1165139

Stromberg J. O. A modified Franklin system and higher order spline systems on Rnas unconditional bases for Hardy spaces pp.475–493in: Conference in Honor of A. Zygmund Vol. II W. Beckner et al. eds. Wadsworth Math. Series Belmont California 1982.

Tchamitchian Ph., 1987, Biorthogonalité et théorie des opérateurs, Rev. Math. Iberoamericana, 3, 10.4171/rmi/48

10.1109/29.1491

10.1016/0165-1684(86)90101-5

Vetterli M. andHerley C. Wavelets and filter banks: theory and design IEEE Trans. ASSP to appear September1992.

Young R. M., 1980, An Introduction to Nonharmonic Fourier Series