Biorthogonal bases of compactly supported wavelets
Tóm tắt
Orthonormal bases of compactly supported wavelet bases correspond to subband coding schemes with exact reconstruction in which the analysis and synthesis filters coincide. We show here that under fairly general conditions, exact reconstruction schemes with synthesis filters different from the analysis filters give rise to two dual Riesz bases of compactly supported wavelets. We give necessary and sufficient conditions for biorthogonality of the corresponding scaling functions, and we present a sufficient conditions for the decay of their Fourier transforms. We study the regularity of these biorthogonal bases. We provide several families of examples, all symmetric (corresponding to “linear phase” filters). In particular we can construct symmetric biorthogonal wavelet bases with arbitraily high preassigned regularity; we also show how to construct symmetric biorthogonal wavelet bases “close” to a (nonsymmetric) orthonormal basis.
Từ khóa
Tài liệu tham khảo
Antonini M. Barlaud M. Mathieu P. andDaubechies I. Image coding using wavelet transforms IEEE Trans. Image Proc. 1 1992 to appear.
Auscher P. Ondelettes fractales et applications Ph.D. Thesis 1989 Université de Paris IX (Dauphine) France.
Barlaud M. private communication.
Cohen A. andDaubechies I. Nonseparable bidimensional wavelet bases submitted toRev. Mat. Iberoamericana.
Cohen A., 1990, Ondelettes, analysis multirésolutions et filtres mirroirs en quadrature, Ann. Inst. H. Poincaré, 7, 439, 10.1016/s0294-1449(16)30286-4
Conze J. P. andRaugi A. Fonctions harmoniques pour un opérteur de transition et applications preprint Dépt. de Mathématique Université de Renness France.
Daubechies I. Orthonormal bases of compactly supported wavelets. Part II: Variations on a theme submitted toSIAM J. Math. Anal.
Daubechies I., 1992, Two‐scale difference equations. Part II: Local regularity, infinite products of matrices and fractals, SIAM J. Math. Anal., 24
Deslauriers G., 1987, Fractals, dimensions non entières et applications, 44
Duffin R. J., 1952, A class of nonharmonic Fourier series, Trans. Am. Math. Soc., 72, 341, 10.1090/S0002-9947-1952-0047179-6
Dyn N. andLevin D. Interpolating subdivision schemes for the generation of curves and surfaces preprint Math. Dept. Tel Aviv University 1989.
DeVore R. A. Jawerth B. andPopov V. Compression of wavelet decompositions preprint Dept. of Math. University of South Carolina 1990.
Feauveau J.‐C. Analyse multirésolution par ondelettes non orthogonales et bancs de filtres numériques Ph.D. Thesis Université de Paris Sud 1990.
Lemarié P. G., 1988, Ondelettes à localisation exponentielle, J. Math. Pures et Appl., 67, 227
Meyer Y. Principe d'incertitude bases hilbertiennes et algèbres d'opérateurs Séminaire Bourbaki 1985–1986 No. 662.
Meyer Y., 1990, Ondelettes et opérateurs
Meyer Y. Ondelettes fonctions splines et analyses graduées Lectures given at the University of Torino Italy 1986.
Micchelli C. andPrautzsch H. Uniform refinement of curves pp.841–870in: Linear Algebra and Applications 114–115 1989.
Stromberg J. O. A modified Franklin system and higher order spline systems on Rnas unconditional bases for Hardy spaces pp.475–493in: Conference in Honor of A. Zygmund Vol. II W. Beckner et al. eds. Wadsworth Math. Series Belmont California 1982.
Tchamitchian Ph., 1987, Biorthogonalité et théorie des opérateurs, Rev. Math. Iberoamericana, 3, 10.4171/rmi/48
Vetterli M. andHerley C. Wavelets and filter banks: theory and design IEEE Trans. ASSP to appear September1992.
Young R. M., 1980, An Introduction to Nonharmonic Fourier Series