Bioreactors in tissue engineering—principles, applications and commercial constraints

Biotechnology Journal - Tập 8 Số 3 - Trang 298-307 - 2013
Jan Hansmann1, Florian Groeber2, Alexander Kahlig2, Claudia Kleinhans2, Heike Walles1,3
1Department of Cell and Tissue Engineering, Fraunhofer Institute of Interfacial Engineering and Biotechnology (IGB) Stuttgart, Germany
2Institute for Interfacial Engineering IGVT, University of Stuttgart, Germany
3Institute for Tissue Engineering and Regenerative Medicine, University of Würzburg, Germany

Tóm tắt

AbstractBioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue‐specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue‐engineering concept. To date, a variety of bioreactor systems for tissue‐specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue‐engineered implants. We review possible applications for bioreactor systems within a tissue‐engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three‐dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints.

Từ khóa


Tài liệu tham khảo

10.1073/pnas.192291499

10.1016/S0092-8674(04)00255-7

10.1242/dev.024166

Hambor J., 2012, Bioreactor design and bioprocess controls for industrialized cell processing., BioProcess Int., 10, 22

10.1021/bp0500664

10.1016/j.ymeth.2008.10.015

10.1073/pnas.0910666106

Colton C. K., 1970, Diffusion of organic solutes in stagnant plasma and red cell suspensions, Chemical Engineering, Progress Symposium Series, 66, 85

10.1101/gad.242002

10.1016/S0006-2952(00)00529-3

10.1007/978-1-60761-984-0_1

10.1016/S0142-9612(02)00490-8

10.1016/j.addr.2011.03.004

10.1038/nbt0705-821

10.1007/s10529-006-9111-x

10.1007/978-3-540-69357-4_2

10.1152/ajpheart.01047.2006

10.1161/hh2301.100806

10.1051/medsci/2004205557

10.1007/BF02351006

10.1016/S0070-2153(03)58001-2

10.1016/j.semcdb.2008.12.009

Weber S. A. Vonhoff P. A. Owens F. J. Byrne J. McAdams E. T. Development of a multi‐electrode electrical stimulation device to improve chronic wound healing.EMBC: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2009 2145–2148.

10.1038/nrm1858

10.1073/pnas.0402532101

10.1007/s12195-009-0070-x

10.1089/ten.tec.2010.0381

10.1016/j.tibtech.2003.12.001

10.1111/j.1469-7580.2006.00631.x

10.4161/mabs.2.5.12720

10.1038/sj.bmt.1701987

10.1634/stemcells.2005-0591

10.1097/01.tp.0000214462.63943.14

10.1290/1071-2690(2002)038<0343:ROEAAC>2.0.CO;2

10.1002/jor.1100090504

10.1126/science.284.5411.143

10.1016/j.jbiomech.2004.06.026

10.1530/rep.1.00243

10.1089/ten.2006.12.3233

10.1016/j.cbpa.2007.05.034

10.1089/ten.tea.2008.0455

10.1002/bit.22850

10.1089/ten.tea.2010.0014

10.1002/jcp.21688

10.1271/bbb.60568

10.1007/s00449-010-0449-z

10.3184/003685010X12708175591515

10.1016/j.cell.2006.06.044

10.1007/s12015-009-9080-2

10.1089/ten.tec.2010.0172

10.1089/hum.2010.173

10.1634/stemcells.2005-0112

10.1021/bp070241b

10.1002/1097-0290(20001005)70:1<32::AID-BIT5>3.0.CO;2-V

10.1002/jbm.10150

10.1038/nm0898-901

10.1007/BF00184969

10.1002/bit.10788

10.1016/0142-9612(96)83283-2

10.1615/JLongTermEffMedImplants.v16.i2.10

10.1016/j.bone.2010.09.138

10.2165/00003088-200443040-00001

10.1126/science.284.5413.489

10.1002/bit.20797

10.1114/1.1415522

10.1263/jbb.105.536

Chen G., 2012, Effects of surface functionalization of PLGA membranes for guided bone regeneration on proliferation and behavior of osteoblasts., J. Biomed. Mater. Res., Part A

10.1002/adfm.201001330

10.1016/j.biomaterials.2011.06.035

10.1016/j.jbiotec.2010.03.015

10.1186/1471-2474-11-60

10.1016/S1369-7021(10)70014-6

10.1002/jbm.a.31914

10.1016/S0142-9612(00)00280-5

10.1002/btpr.386

10.1016/j.jss.2007.12.788

Stiehler M., 2009, Effect of dynamic 3‐D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells., J. Biomed. Mater. Res., Part A, 89, 96, 10.1002/jbm.a.31967

10.1089/107632703322066723

10.1016/j.biomaterials.2005.07.044

10.1016/j.jbiotec.2007.11.010

Kahn C. J., 2008, A novel bioreactor for ligament tissue engineering., Bio‐Med. Mater. Eng., 18, 283, 10.3233/BME-2008-0538

10.1146/annurev.bioeng.6.040803.140037

10.1016/j.jbiomech.2009.04.033

10.1096/fj.01-0656fje

10.1115/1.429656

Knebel G. Muehlfriedel S. Bioreactor and method for cultivating cells and tissues US Patent Application 2011/0111504 A1 2009.

10.1002/btpr.380

10.22203/eCM.v020a28

10.1002/jbm.a.31994

10.1002/1097-4636(20010305)54:3<344::AID-JBM50>3.0.CO;2-1

10.1016/S1369-7021(08)70086-5

Kahlig A., 2012, In silico approaches for the identification of optimal culture condition for tissue engineered bone substitutes., Curr. Anal. Chem., 8

10.1073/pnas.0905439106

10.1016/S0142-9612(03)00383-1

10.1002/jor.21264

Mow V. Ratcliffe A. (Eds.) Structure and Function of Articular Cartilage and Meniscus Lippincott‐Raven Publishers Philadelphia 2001.

10.1007/s00167-011-1460-x

10.1016/j.tibtech.2009.06.002

Fenn J. Raskino M. Mastering the Hype Cycle: How to Choose the Right Innovation at the Right Time Harvard Business Press Boston MA 2008.

10.1098/rsif.2010.0348.focus

10.1089/107632704322791943

Vilenderer K. Prairie E. Instrumented bioreactor with material property measurement capability and process‐based adjustment for conditioning tissue engineered medical products US Patent 7410792 B2 2008.

Hutmacher D. W. Teoh S. H. Ranawake M. Chong W. S. et al. Bioreactor for growing cells or tissue cultures US Patent 7604987 2009.

Mehta S. S. Commercializing Successful Biomedical Technologies: Basic Principles for the Development of Drugs Diagnostics and Devices Cambridge University Press Cambridge 2008.

Töpfer A. Blum U. Eickhoff G. Junginger I. et al. Economic Benefits of Standardization. Summary of results: Final Report and Practical Examples. Beuth Berlin 2002 pp. 8–30.

10.1023/A:1025590811529

Coecke S., 2005, Guidance on good cell culture practice—a report of the second ECVAM task force on good cell culture practice., ATLA, Altern. Lab. Anim., 33, 261, 10.1177/026119290503300313

Hansmann J., 2012, Bioreaktorsysteme im Tissue Engineering., TechnoPharm, 2, 192