Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges

Biotechnology for Biofuels - Tập 14 Số 1
Mobolaji Felicia Adegboye1, Omena Bernard Ojuederie1, Paola Talia2, Olubukola Oluranti Babalola1
1Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
2Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA CICVyA, CNIA, INTA Castelar, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, 1686) Hurlingham, Provincia de Buenos Aires, Argentina

Tóm tắt

AbstractThe issues of global warming, coupled with fossil fuel depletion, have undoubtedly led to renewed interest in other sources of commercial fuels. The search for renewable fuels has motivated research into the biological degradation of lignocellulosic biomass feedstock to produce biofuels such as bioethanol, biodiesel, and biohydrogen. The model strain for biofuel production needs the capability to utilize a high amount of substrate, transportation of sugar through fast and deregulated pathways, ability to tolerate inhibitory compounds and end products, and increased metabolic fluxes to produce an improved fermentation product. Engineering microbes might be a great approach to produce biofuel from lignocellulosic biomass by exploiting metabolic pathways economically. Metabolic engineering is an advanced technology for the construction of highly effective microbial cell factories and a key component for the next-generation bioeconomy. It has been extensively used to redirect the biosynthetic pathway to produce desired products in several native or engineered hosts. A wide range of novel compounds has been manufactured through engineering metabolic pathways or endogenous metabolism optimizations by metabolic engineers. This review is focused on the potential utilization of engineered strains to produce biofuel and gives prospects for improvement in metabolic engineering for new strain development using advanced technologies.

Từ khóa


Tài liệu tham khảo

Lan EI, Dekishima Y, Chuang DS, Liao JC. Metabolic engineering of 2-pentanone synthesis in Escherichia coli. AIChE J. 2013;59(9):3167–75.

Pandey A, Larroche C, Gnansounou E, Khanal SK, Dussap C-G, Ricke S: Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels. 2019.

Ben-Iwo J, Manovic V, Longhurst P. Biomass resources and biofuels potential for the production of transportation fuels in Nigeria. Renew Sustain Energy Rev. 2016;63:172–92.

Naik SN, Goud VV, Rout PK, Dalai AK. Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev. 2010;14(2):578–97.

Adegboye MF, Lobb B, Babalola OO, Doxey AC, Ma K. Draft genome sequences of two novel cellulolytic streptomyces strains isolated from South African rhizosphere soil. Genome Announc. 2018;6(26):e00632-e1618.

Banerjee G, Scott-Craig JS, Walton JD. Improving enzymes for biomass conversion: a basic research perspective. Bioenergy Res. 2010;3(1):82–92.

Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, Martín HG. Synthetic and systems biology for microbial production of commodity chemicals. Syst Biol Appl. 2016;2:16009.

Griffiths H: Bringing New Products from Marine Microorganisms to the Market. The marine microbiome. Springer; 2016. p. 435–452.

Ahmed AAQ, Babalola OO, McKay T. Cellulase- and xylanase-producing bacterial isolates with the ability to saccharify wheat straw and their potential use in the production of pharmaceuticals and chemicals from lignocellulosic materials. Waste Biomass Valorization. 2018;9(5):765–75.

Ceballos R, Chan M, Batchenkova N, Duffing-Romero A, Nelson A, Man S. Bioethanol: feedstock alternatives, pretreatments, lignin chemistry, and the potential for green value-added lignin co-products. J Environ Anal Chem. 2015. https://doi.org/10.4172/2380-2391.1000164.

Taha M, Foda M, Shahsavari E, Aburto-Medina A, Adetutu E, Ball A. Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr Opin Biotechnol. 2016;38:190–7.

Liu G, Zhang J, Bao J. Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess Biosyst Eng. 2016;39(1):133–40.

Aro E-M. From first generation biofuels to advanced solar biofuels. Ambio. 2016;45(1):24–31.

Abomohra AE-F, Jin W, Tu R, Han S-F, Eid M, Eladel H. Microalgal biomass production as a sustainable feedstock for biodiesel: current status and perspectives. Renew Sustain Energy Rev. 2016, 64:596–606.

Gaida SM, Liedtke A, Jentges AHW, Engels B, Jennewein S. Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose. Microb Cell Fact. 2016. https://doi.org/10.1186/s12934-12015-10406-12932.

Peralta-Yahya PP, Zhang F, Del Cardayre SB, Keasling JD. Microbial engineering for the production of advanced biofuels. Nature. 2012;488(7411):320–8.

Pirie CM, De Mey M, Prather KLJ, Ajikumar PK. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis. ACS Chem Biol. 2013;8(4):662–72.

Simeonidis E, Price ND. Genome-scale modeling for metabolic engineering. J Ind Microbiol Biotechnol. 2015;42(3):327–38.

Lee SK, Chou H, Ham TS, Lee TS, Keasling JD. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol. 2008;19(6):556–63.

Jönsson LJ, Alriksson B, Nilvebrant N-O. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels. 2013;6(1):16.

Monshizadeh A. Influence of the molecular weight of cellulose on the solubility in ionic liquid-water mixtures. 2015.

Gupta VK, Tuohy K. Microbial enzymes in bioconversions of biomass: Springer; 2016.

Nanda S, Mohammad J, Reddy SN, Kozinski JA, Dalai AK. Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion Biorefinery. 2014;4(2):157–91.

Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci. 2012;38(4):449–67.

Sarkar N, Ghosh SK, Bannerjee S, Aikat K. Bioethanol production from agricultural wastes: an overview. Renewable Energy. 2012;37(1):19–27.

Safaai M, Sharliza N, Azizan A, Ramli M, Kamarludin C, Norsyarahah S. Overview on mechanical-chemical ionic liquid pretreatment study on bioethanol–based lignocellulosics biomass. Adv Mater Res. 2015; pp. 260–265.

Obeng EM, Adam SNN, Budiman C, Ongkudon CM, Maas R, Jose J. Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Bioresources Bioprocessing. 2017;4(1):16.

Chanliaud E, De Silva J, Strongitharm B, Jeronimidis G, Gidley MJ. Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites. Plant J. 2004;38(1):27–37.

Babalola OO. Pectinase and cellulase enhance the control of Abutilon theophrasti by Colletotrichum coccodes. Biocontrol Sci Tech. 2007;17(1):53–61.

Lynd LR, Cushman JH, Nichols RJ, Wyman CE. Fuel ethanol from cellulosic biomass. Science. 1991;251(4999):1318–23.

Rowell RM, Schultz TP, Narayan R. Emerging technologies for materials and chemicals from biomass; 1992.

Tsegaye B, Balomajumder C, Roy P. Microbial delignification and hydrolysis of lignocellulosic biomass to enhance biofuel production: an overview and future prospect. In. 2019;43:1–16.

Atreya ME. Engineering cellulase enzymes for bioenergy. 2015.

Wilson DB. Cellulases and biofuels. Curr Opin Biotechnol. 2009;20(3):295–9.

Souza WRd. Microbial degradation of lignocellulosic biomass. 2013.

Andlar M, Rezić T, Marđetko N, Kracher D, Ludwig R, Šantek B. Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci. 2018;18(11):768–78.

Uchida H, Kusakabe I, Kawabata Y, Ono T, Murakami K. Production of xylose from xylan with intracellular enzyme system of Aspergillus niger 5–16. J Ferment Bioeng. 1992;74(3):153–8.

Geiser E, Wierckx N, Zimmermann M, Blank LM. Identification of an endo-1, 4-beta-xylanase of Ustilago maydis. BMC Biotechnol. 2013;13(1):59.

Juturu V, Wu JC. Microbial cellulases: engineering, production and applications. Renew Sustain Energy Rev. 2014;33(33):188–203.

Wilson DB. Processive cellulases in: direct microbial conversion of biomass to advanced biofuels. department of molecular biology and genetics, Cornell University, Ithaca. 2015. pp. 83–89.

Nam KH, Sung MW, Hwang KY. Structural insights into the substrate recognition properties of β-glucosidase. Biochem Biophys Res Commun. 2010;391(1):1131–5.

Biely P, Vršanská M, Tenkanen M, Kluepfel D. Endo-β-1, 4-xylanase families: differences in catalytic properties. J Biotechnol. 1997;57(1–3):151–66.

van den Brink J, de Vries RP. Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol. 2011;91(6):1477.

de Souza WR. Microbial degradation of lignocellulosic biomass. Sustainable degradation lignocellulosic biomass-techniques, applications commercialization 2013. pp. 207–247.

Biswas R. Bioprocessing of renewable resources to commodity bioproducts 1 ed VS Bisaria and A Kondo. Production of Cellulolytic Enzymes. Wiley; 2014.

Bhardwaj N, Kumar B, Verma P. A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresources Bioprocessing. 2019;6(1):40.

Benedetti M, Locci F, Gramegna G, Sestili F, Savatin DV. Green production and biotechnological applications of cell wall lytic enzymes. Appl Sci. 2019;9(23):5012.

Garg G, Singh A, Kaur A, Singh R, Kaur J, Mahajan R. Microbial pectinases: an ecofriendly tool of nature for industries. Biotech. 2016;6(1):47.

Rha E, Park HJ, Kim MO, Chung YR, Lee C-W, Kim JW. Expression of exo-polygalacturonases in Botrytis cinerea. FEMS Microbiol Lett. 2001;201(1):105–9.

Mojsov K. Aspergillus enzymes for food industries. New and future developments in microbial biotechnology and bioengineering. Elsevier; 2016. pp. 215–222.

Eijsink VG, Petrovic D, Forsberg Z, Mekasha S, Røhr ÅK, Várnai A, Bissaro B, Vaaje-Kolstad G. On the functional characterization of lytic polysaccharide monooxygenases (LPMOs). Biotechnol Biofuels. 2019;12(1):58.

Meier KK, Jones SM, Kaper T, Hansson H, Koetsier MJ, Karkehabadi S, Solomon EI, Sandgren M, Kelemen B. Oxygen activation by Cu LPMOs in recalcitrant carbohydrate polysaccharide conversion to monomer sugars. Chem Rev. 2017;118(5):2593–635.

Loose JS, Arntzen MØ, Bissaro B, Ludwig R, Eijsink VG, Vaaje-Kolstad G. Multipoint precision binding of substrate protects lytic polysaccharide monooxygenases from self-destructive off-pathway processes. Biochemistry. 2018;57(28):4114–24.

Du L, Ma L, Ma Q, Guo G, Han X, Xiao D. Hydrolytic boosting of lignocellulosic biomass by a fungal lytic polysaccharide monooxygenase, AnLPMO15g from Aspergillus niger. Ind Crops Prod. 2018;126:309–15.

Raguz S, Yaguea E, Wood D, Thurston C. Isolation and characterization of a cellulose-growth-specific gene from Agaricus bisporus. Gene. 1992;119(2):183–90.

Armesilla AL, Thurston CF, Yagüe E. CEL1: a novel cellulose binding protein secreted by Agaricus bisporus during growth on crystalline cellulose. FEMS Microbiol Lett. 1994;116(3):293–9.

Ezeilo UR, Zakaria II, Huyop F, Wahab RA. Enzymatic breakdown of lignocellulosic biomass: the role of glycosyl hydrolases and lytic polysaccharide monooxygenases. Biotechnol Biotechnol Equip. 2017;31(4):647–62.

Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 2009;37(Suppl_1):233–8.

Forsberg Z, Mackenzie AK, Sørlie M, Røhr ÅK, Helland R, Arvai AS, Vaaje-Kolstad G, Eijsink VG. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci. 2014;111(23):8446–51.

Phillips CM, Beeson WT IV, Cate JH, Marletta MA. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol. 2011;6(12):1399–406.

Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels. 2013;6(1):41.

Hemsworth GR, Henrissat B, Davies GJ, Walton PH. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol. 2014;10(2):122.

Leggio LL, Simmons TJ, Poulsen JCN, Frandsen KE, Hemsworth GR, Stringer MA, Von Freiesleben P, Tovborg M, Johansen KS, De Maria L. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun. 2015;6(1):1–9.

Walton PH, Davies GJ. On the catalytic mechanisms of lytic polysaccharide monooxygenases. Curr Opin Chem Biol. 2016;31:195–207.

Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, Westereng B. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci. 2014;111(17):6287–92.

Fanuel M, Garajova S, Ropartz D, McGregor N, Brumer H, Rogniaux H, Berrin J-G. The Podospora anserina lytic polysaccharide monooxygenase Pa LPMO9H catalyzes oxidative cleavage of diverse plant cell wall matrix glycans. Biotechnol Biofuels. 2017;10(1):63.

Frommhagen M, Koetsier MJ, Westphal AH, Visser J, Hinz SW, Vincken J-P, Van Berkel WJ, Kabel MA, Gruppen H. Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity. Biotechnol Biofuels. 2016;9(1):186.

Jagadeeswaran G, Gainey L, Prade R, Mort AJ. A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and at least one is active on cellulose and xyloglucan. Appl Microbiol Biotechnol. 2016;100(10):4535–47.

Sorek N, Yeats TH, Szemenyei H, Youngs H, Somerville CR. The implications of lignocellulosic biomass chemical composition for the production of advanced biofuels. Bioscience. 2014. https://doi.org/10.1093/biosci/bit1037.

Scharf ME. Termites as targets and models for biotechnology. Annu Rev Entomol. 2015;60:77–102.

Yang B, Wyman CE. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioproducts Biorefining. 2008;2(1):26–40.

de Gonzalo G, Colpa DI, Habib MHM, Fraaije MW. Bacterial enzymes involved in lignin degradation. J Biotechnol. 2016;236:110–9.

Sindhu R, Binod P, Pandey A. Biological pretreatment of lignocellulosic biomass–an overview. Biores Technol. 2016;199:76–82.

Davidi L, Moraïs S, Artzi L, Knop D, Hadar Y, Arfi Y, Bayer EA. Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome. Syst Biol Appl. 2016;113(39):10854–9.

Salwan R, Sharma V. The role of actinobacteria in the production of industrial enzymes. New and future developments in microbial biotechnology and bioengineering. Elsevier; 2018. pp. 165–177.

Bode W, Huber R. Natural protein proteinase inhibitors and their interaction with proteinases. EJB Rev. Springer; 1993. pp.43–61.

Passari AK, Mishra VK, Singh G, Singh P, Kumar B, Gupta VK, Sarma RK, Saikia R, Singh BP. Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci Rep. 2017;7(1):1–17.

Miyashita K, Fujii T, Sawada Y. Molecular cloning and characterization of chitinase genes from Streptomyces lividans 66. Microbiology. 1991;137(9):2065–72.

Techapun C, Poosaran N, Watanabe M, Sasaki K. Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: a review. Process Biochem. 2003;38(9):1327–40.

Majumdar S, Lukk T, Solbiati JO, Bauer S, Nair SK, Cronan JE, Gerlt JA. Roles of small laccases from Streptomyces in lignin degradation. Biochemistry. 2014;53(24):4047–58.

Doori M, Hunter I. Theoretical and practical studies on the metabolic engineering of streptomyces for production of butanols. J Microbiol Exp. 2017;5(7):00177.

Dixit V, Pant A. Comparative characterization of two serine endopeptidases from Nocardiopsis sp NCIM 5124. Biochimica et Biophysica Acta (BBA) General Subjects. 2000;1523(23):261–8.

Scott JJ, Oh D-C, Yuceer MC, Klepzig KD, Clardy J, Currie CR. Bacterial protection of beetle-fungus mutualism. Science. 2008;322(5898):63–63.

Watanabe Y, Shinzato N, Fukatsu T. Isolation of actinomycetes from termites’ guts. Biosci Biotechnol Biochem. 2003;67(8):1797–801.

Vasanthakumar A, Handelsman J, Schloss PD, Bauer LS, Raffa KF. Gut microbiota of an invasive subcortical beetle, Agrilus planipennis Fairmaire, across various life stages. Environ Entomol. 2008;37(5):1344–53.

Lewin GR, Carlos C, Chevrette MG, Horn HA, McDonald BR, Stankey RJ, Fox BG, Currie CR. Evolution and ecology of Actinobacteria and their bioenergy applications. Annu Rev Microbiol. 2016;70:235–54.

Mihajlovski K, Buntić A, Milić M, Rajilić-Stojanović M, Dimitrijević-Branković S: From Agricultural Waste to Biofuel: Enzymatic Potential of a Bacterial Isolate Streptomyces fulvissimus CKS7 for Bioethanol Production. Waste and Biomass Valorization 2020. pp. 1–10.

Arneodo JD, Etcheverry C, Thebe T, Babalola OO, Godoy MC, Talia P. Molecular evidence that cellulolytic bacterial genus Cohnella is widespread among Neotropical Nasutitermitinae from NE Argentina. Rev Argent Microbiol. 2018;51(1):77–80.

Arora STJMN, Mishra P: Microbial cellulolytic enzymes: diversity and biotechnology with reference to lignocellulosic biomass degradation. 2020.

Han Q, Liu N, Robinson H, Cao L, Qian C, Wang Q, Xie L, Ding H, Wang Q, Huang Y. Biochemical characterization and crystal structure of a GH10 xylanase from termite gut bacteria reveal a novel structural feature and significance of its bacterial Ig-like domain. Biotechnol Bioeng. 2013;110(12):3093–103.

Talia P, Arneodo J. Lignocellulose degradation by termites. Termites and sustainable management. Springer; 2018. pp. 101–117.

Abo BO, Gao M, Wang Y, Wu C, Ma H, Wang Q. Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes. Rev Environ Health. 2019;34(1):57–68.

Arora R, Sharma NK, Kumar S, Sani RK. Lignocellulosic ethanol: feedstocks and bioprocessing. Bioethanol production from food crops. Elsevier; 2019. pp. 165–185.

Brodeur G, Yau E, Badal K, Collier J, Ramachandran K, Ramakrishnan S. Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Research. 2011.

Harmsen P, Huijgen W, Bermudez L, Bakker R: Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Wageningen UR-Food & Biobased Research; 2010.

Lu X, Zhang Y, Yang J, Liang Y. Enzymatic hydrolysis of corn stover after pretreatment with dilute sulfuric acid. Chem Eng Technol Industrial Chem Plant Equipment Process Eng Biotechnol. 2007;30(7):938–44.

Tran TTA, Le TKP, Mai TP, Nguyen DQ. Bioethanol production from lignocellulosic biomass. alcohol fuels-current technologies and future prospect. IntechOpen; 2019.

Bhandari N, Macdonald DG, Bakhshi NN. Kinetic studies of corn stover saccharification using sulphuric acid. Biotechnol Bioeng. 1984;26(4):320–7.

Cara C, Ruiz E, Oliva JM, Sáez F, Castro E. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Biores Technol. 2007;99(6):1869–76.

Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Biores Technol. 2007;98(16):3000–11.

Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR. Optimization of pH controlled liquid hot water pretreatment of corn stover. Biores Technol. 2005;96(18):1986–93.

Tsegaye B, Balomajumder C, Roy P. Alkali pretreatment of wheat straw followed by microbial hydrolysis for bioethanol production. Environ Technol. 2017;40(9):1203–11.

Balan V. Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnology; 2014. Doi: https://doi.org/10.1155/2014/463074.

Karimi K. Lignocellulose-based bioproducts. Germany: Springer; 2015.

Taherzadeh MJ, Karimi K. Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources. 2007;2(4):707–38.

Axelsson J. Separate hydrolysis and fermentation of pretreated spruce. 2011.

Alfani F, Gallifuoco A, Saporosi A, Spera A, Cantarella M. Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. J Ind Microbiol Biotechnol. 2000;25(4):184–92.

Zabed H, Sahu J, Boyce A, Faruq G. Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energy Rev. 2016;66:751–74.

Althuri A, Chintagunta AD, Sherpa KC, Banerjee R. Simultaneous saccharification and fermentation of lignocellulosic biomass. Biorefining of Biomass to Biofuels. Springer; 2018; pp. 265–285.

Liu F, Monroe E, Davis RW. Engineering microbial consortia for bioconversion of multisubstrate biomass streams to biofuels. Biofuels-Challenges and opportunities. IntechOpen; 2018.

Levin DB, Verbeke TJ, Munir R, Islam R, Ramachandran U, Lal S, Schellenberg J, Sparling R. Omics approaches for designing biofuel producing cocultures for enhanced microbial conversion of lignocellulosic substrates. Direct microbial conversion of biomass to advanced biofuels. Elsevier; 2015; pp. 335–363.

Fan Z: Consolidated bioprocessing for ethanol production. Biorefineries. Elsevier; 2014; pp. 141–160.

Mbaneme-Smith V, Chinn MS. Consolidated bioprocessing for biofuel production: recent advances. Energy Emission Control Technol. 2015;3:23.

Schuster BG, Chinn MS. Consolidated bioprocessing of lignocellulosic feedstocks for ethanol fuel production. BioEnergy Res. 2013;6(2):416–35.

Kim S, Baek S-H, Lee K, Hahn J-S. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Microb Cell Fact. 2013;12(1):14.

Azman S, Khadem AF, Van Lier JB, Zeeman G, Plugge CM. Presence and role of anaerobic hydrolytic microbes in conversion of lignocellulosic biomass for biogas production. Crit Rev Environ Sci Technol. 2015;45(23):2523–64.

Fockink DH, Maceno MAC, Ramos LP. Production of cellulosic ethanol from cotton processing residues after pretreatment with dilute sodium hydroxide and enzymatic hydrolysis. BioresourceTechnol. 2015;187:91–6.

Behera SS, Ray RC. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. Int J Biol Macromol. 2016;86:656–69.

García-Aparicio M, Oliva J, Manzanares P, Ballesteros M, Ballesteros I, González A, Negro M. Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel. 2011;90(4):1624–30.

Parisutham V, Kim TH, Lee SK. Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production. Biores Technol. 2014;161:431–40.

Kim J-H, Block DE, Mills DA. Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol. 2010;88(5):1077–85.

Canilha L, Chandel AK. Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. BioMed Res Int. 2012. https://doi.org/10.1155/2012/989572.

Martiniano SE, Chandel AK, Soares LC, Pagnocca FC, da Silva SS. Evaluation of novel xylose-fermenting yeast strains from Brazilian forests for hemicellulosic ethanol production from sugarcane bagasse. 3 Biotech. 2013;3(5):345–52.

Moysés DN, Reis VCB, Almeida JRMD, Moraes LMPD, Torres FAG. Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci. 2016;17(3):207.

Chandel AK, Singh OV, Chandrasekhar G, Rao LV, Narasu ML. Key drivers influencing the commercialization of ethanol-based biorefineries. J Commercial Biotechnol. 2010;16(3):239–57.

Senatham S, Chamduang T, Kaewchingduang Y, Thammasittirong A, Srisodsuk M, Elliston A, Roberts IN, Waldron KW. Thammasittirong SN-R: enhanced xylose fermentation and hydrolysate inhibitor tolerance of Scheffersomyces shehatae. SpringerPlus. 2016;5(1):1–8.

Li P, Fu X, Zhang L, Li S. CRISPR/Cas-based screening of a gene activation library in Saccharomyces cerevisiae identifies a crucial role of OLE1 in thermotolerance. Microb Biotechnol. 2019;12(6):1154.

McMillan JD, Beckham GT. Thinking big: towards ideal strains and processes for large-scale aerobic biofuels production. Microb Biotechnol. 2017;10(1):40–2.

Du J, Shao Z, Zhao H. Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol. 2011;38(8):873–90.

Chua P, Somanchi A. Genetically engineered microorganisms that metabolize xylose. In.: Google Patents; 2016.

Milne N, Wahl S, van Maris A, Pronk J, Daran J. Excessive by-product formation: a key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains. Metabolic Eng Commun. 2016;3:39–51.

Romaní A, Pereira F, Johansson B, Domingues L. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Biores Technol. 2015;179:150–8.

Pasotti L, Zucca S, Casanova M, Micoli G, De Angelis MGC, Magni P. Fermentation of lactose to ethanol in cheese whey permeate and concentrated permeate by engineered Escherichia coli. BMC Biotechnol. 2017;17(1):48.

Mendez-Perez D, Alonso-Gutierrez J, Hu Q, Molinas M, Baidoo EE, Wang G, Chan LJ, Adams PD, Petzold CJ, Keasling JD. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli. Biotechnol Bioeng. 2017;114:1703–12.

Jessop-Fabre MM, Jakočiūnas T, Stovicek V, Dai Z, Jensen MK, Keasling JD, Borodina I. EasyClone-MarkerFree: a vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol J. 2016;11(8):1110–7.

Parisutham V, Sathesh-Prabu C, Mukhopadhyay A, Lee SK, Keasling JD. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries. Bioresource Technol. 2017;239:496–506.

Sievert C, Nieves LM, Panyon LA, Loeffler T, Morris C, Cartwright RA, Wang X. Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR. Proc Natl Acad Sci. 2017;114(28):7349–54.

Flores AD, Ayla EZ, Nielsen DR, Wang X. Engineering a synthetic, catabolically orthogonal coculture system for enhanced conversion of lignocellulose-derived sugars to ethanol. ACS Synthetic Biol. 2019;8(5):1089–99.

Bilal M, Iqbal HM, Hu H, Wang W, Zhang X. Metabolic engineering and enzyme-mediated processing: a biotechnological venture towards biofuel production–a review. Renew Sustain Energy Rev. 2018;82:436–47.

Ling H, Teo W, Chen B, Leong SSJ, Chang MW. Microbial tolerance engineering toward biochemical production: from lignocellulose to products. Curr Opin Biotechnol. 2014;29:99–106.

Mukhopadhyay A. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol. 2015;23(8):498–508.

Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, Jin Y-S. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS ONE. 2013;8(2):e57048.

Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science. 2006;314(5805):1565–8.

Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451(7174):86–9.

El-Rotail AA, Zhang L, Li Y, Liu SP, Shi GY. A novel constructed SPT15 mutagenesis library of Saccharomyces cerevisiae by using gTME technique for enhanced ethanol production. AMB Express. 2017;7(1):111.

Xu P: Production of chemicals using dynamic control of metabolic fluxes. 2017.

Hollinshead W, He L, Tang YJ. Biofuel production: an odyssey from metabolic engineering to fermentation scale-up. Front Microbiol. 2014. https://doi.org/10.3389/fmicb.2014.00344.

Majidian P, Tabatabaei M, Zeinolabedini M, Naghshbandi MP, Chisti Y. Metabolic engineering of microorganisms for biofuel production. Renew Sustain Energy Rev. 2017;82:3863–85.

Bashor CJ, Horwitz AA, Peisajovich SG, Lim WA. Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems. Ann Rev Biophysics. 2010;39:515–37.

Seshasayee AS, Fraser GM, Babu MM, Luscombe NM. Principles of transcriptional regulation and evolution of the metabolic system in E. coli. Genome Res. 2009;19(1):79–91.

Lv Y, Qian S, Du G, Chen J, Zhou J, Xu P. Coupling feedback genetic circuits with growth phenotype for dynamic population control and intelligent bioproduction. UMBC Faculty Collection. 2019.

Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci. 2014;111(31):11299–304.

Nielsen J. It is all about metabolic fluxes. J Bacteriol. 2003;185(24):7031–5.

Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66(3):506–77.

Avanthi A, Banerjee R. A strategic laccase mediated lignin degradation of lignocellulosic feedstocks for ethanol production. Ind Crops Prod. 2016;92:174–85.

Menon V, Rao M. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci. 2012;38(4):522–50.

Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, et al. How biotech can transform biofuels. Nat Biotechnol. 2008;26:169–72.

Adrio JL, Demain AL. Microbial enzymes: tools for biotechnological processes. In. 2014;4:117–39.

Ravindran R, Jaiswal A. Microbial enzyme production using lignocellulosic food industry wastes as feedstock: a review. Bioengineering. 2016;3(4):30.

Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 2007;450(7169):560–5.

Batista-García RA, del Rayo S-C, Talia P, Jackson SA, O’Leary ND, Dobson AD, Folch-Mallol JL. From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects. Biofuels Bioprod Biorefin. 2016;10(6):864–82.

Bibra M, Wang J, Squillace P, Pinkelman R, Papendick S, Schneiderman S, Wood V, Amar V, Kumar S, Salem D: Biofuels and value-added products from extremophiles. . In book: advances in biotechnology, Chapter: 2. Publisher: I.K. International Publishing House New Delhi; 2015. p. 17–51.

Pandey S. Cellulases in conversion of lignocellulosic waste into second-generation biofuel. Int J Adv Res. 2015;3(7):392–9.

Saini JK, Saini R, Tewari L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech. 2015;5(4):337–53.

Avanthi A, Kumar S, Sherpa KC, Banerjee R. Bioconversion of hemicelluloses of lignocellulosic biomass to ethanol: an attempt to utilize pentose sugars. Biofuels. 2016; pp. 1–14.

Kang A, Lee TS. Converting sugars to biofuels: ethanol and beyond. Bioengineering. 2015;2(4):184–203.

Phelan RM, Sekurova ON, Keasling JD, Zotchev SB. Engineering terpene biosynthesis in Streptomyces for production of the advanced biofuel precursor bisabolene. ACS Synthetic Biol. 2014;4(4):393–9.

Jullesson D, David F, Pfleger B, Nielsen J. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol Adv. 2015;33(7):1395–402.

Kern A, Tilley E, Hunter IS, Legiša M, Glieder A. Engineering primary metabolic pathways of industrial micro-organisms. J Biotechnol. 2007;129(1):6–29.

Singh V, Mani I, Chaudhary DK, Dhar PK. Metabolic engineering of biosynthetic pathway for production of renewable biofuels. Appl Biochem Biotechnol. 2014;172(3):1158–71.

Papoutsakis ET. Reassessing the progress in the production of advanced biofuels in the current competitive environment and beyond: what are the successes and where progress eludes us and why. Ind Eng Chem Res. 2015;54(42):10170–82.

Rabinovitch-Deere CA, Oliver JW, Rodriguez GM, Atsumi S. Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev. 2013;113(7):4611–32.

Cho C, Choi SY, Luo ZW, Lee SY. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnol Adv. 2015;33(7):1455–66.

Zhao X, Xiong L, Zhang M, Bai F. Towards efficient bioethanol production from agricultural and forestry residues: exploration of unique natural microorganisms in combination with advanced strain engineering. BioresourceTechnol. 2016;215:84–91.

Chen Y, Nielsen J. Biobased organic acids production by metabolically engineered microorganisms. Curr Opin Biotechnol. 2016;37:165–72.

Park Y-C, Oh EJ, Jo J-H, Jin Y-S, Seo J-H. Recent advances in biological production of sugar alcohols. Curr Opin Biotechnol. 2016;37:105–13.

Dornau A, Robson JF, Thomas GH, McQueen-Mason SJ. Robust microorganisms for biofuel and chemical production from municipal solid waste. Microb Cell Fact. 2020;19(1):1–18.

Boock JT, Freedman AJ, Tompsett GA, Muse SK, Allen AJ, Jackson LA, Castro-Dominguez B, Timko MT, Prather KL, Thompson JR. Engineered microbial biofuel production and recovery under supercritical carbon dioxide. Nat Commun. 2019;10(1):1–12.

De Bhowmick G, Koduru L, Sen R. Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application—a review. Renew Sustain Energy Rev. 2015;50:1239–53.

Ullah MW, Khattak WA, Ul-Islam M, Khan S, Park JK. Metabolic engineering of synthetic cell-free systems: strategies and applications. Biochem Eng J. 2016;105:391–405.

Runguphan W, Keasling JD. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng. 2014;21:103–13.

Way Jeffrey C, Collins James J, Keasling Jay D, Silver Pamela A. Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell. 2014;157(1):151–61.

Liao JC, Mi L, Pontrelli S, Luo S. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol. 2016;14(5):288–304.

Lo J, Olson DG, Murphy SJL, Tian L, Hon S, Lanahan A, Guss AM, Lynd LR. Engineering electron metabolism to increase ethanol production in Clostridium thermocellum. Metab Eng. 2017;39:71–9.

Chen Z, Huang J, Wu Y, Wu W, Zhang Y, Liu D. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose. Metab Eng. 2017;39:151–8.

Liew F, Henstra AM, Kӧpke M, Winzer K, Simpson SD, Minton NP. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng. 2017;40:104–14.

Varman AM, Xiao Y, Pakrasi HB, Tang YJ. Metabolic Engineering of Synechocystis sp. Strain PCC 6803 for Isobutanol Production. Appl Environ Microbiol. 2013;79(3):908–14.

Hirokawa Y, Maki Y, Hanai T. Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions. Metab Eng. 2017;39:192–9.

Liu R, Zhu F, Lu L, Fu A, Lu J, Deng Z, Liu T. Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli. Metab Eng. 2014;22:10–21.

Lian J, Chao R, Zhao H. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab Eng. 2014;23:92–9.

Chen Z, Wu Y, Huang J, Liu D. Metabolic engineering of Klebsiella pneumoniae for the de novo production of 2-butanol as a potential biofuel. Biores Technol. 2015;197:260–5.

Li L, Li K, Wang Y, Chen C, Xu Y, Zhang L, Han B, Gao C, Tao F, Ma C. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R, 3R)-2, 3-butanediol from lignocellulose-derived sugars. Metab Eng. 2015;28:19–27.

Hu B, Lidstrom ME. Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production. Biotechnol Biofuels. 2014;7(1):156.

Yang X, Xu M, Yang S-T. Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose. Metab Eng. 2015;32:39–48.

Cha M, Chung D, Elkins JG, Guss AM, Westpheling J. Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels. 2013;6(1):85.

Avalos JL, Fink GR, Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol. 2013;31(4):335.

Schadeweg V, Boles E. Increasing n-butanol production with Saccharomyces cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA reductase expression. Biotechnol Biofuels. 2016;9(1):257.

Ko JK, Enkh-Amgalan T, Gong G, Um Y, Lee SM. Improved bioconversion of lignocellulosic biomass by Saccharomyces cerevisiae engineered for tolerance to acetic acid. GCB Bioenergy. 2020;12(1):90–100.

Yu L, Xu M, Tang IC, Yang ST. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose. Biotechnol Bioeng. 2015;112(10):2134–41.

Luo H, Zeng Q, Han S, Wang Z, Dong Q, Bi Y, Zhao Y. High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition. World J Microbiol Biotechnol. 2017;33(4):76.

Das M, Patra P, Ghosh A. Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels. Renew Sustain Energy Rev. 2020;119:109562.

Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol. 2011;77(23):8288–94.

Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science. 1995;267(5195):240–3.

Majidian P, Tabatabaei M, Zeinolabedini M, Naghshbandi MP, Chisti Y. Metabolic engineering of microorganisms for biofuel production. Renew Sustain Energy Rev. 2018;82:3863–85.

Wang H, Cao S, Wang WT, Wang KT, Jia X. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin. J Ind Microbiol Biotechnol. 2016;43(6):861–71.

Romero S, Merino E, Bolívar F, Gosset G, Martinez A. Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Appl Environ Microbiol. 2007;73(16):5190–8.

Tamaru Y, Miyake H, Kuroda K, Nakanishi A, Matsushima C, Doi RH, Ueda M. Comparison of the mesophilic cellulosome-producing Clostridium cellulovorans genome with other cellulosome-related clostridial genomes. Microb Biotechnol. 2011;4(1):64–73.

Bao T, Zhao J, Li J, Liu X, Yang S-T. n-Butanol and ethanol production from cellulose by Clostridium cellulovorans overexpressing heterologous aldehyde/alcohol dehydrogenases. Biores Technol. 2019;285:121316.

Hoang PTN, Ko JK, Gong G, Um Y, Lee S-M. Genomic and phenotypic characterization of a refactored xylose-utilizing Saccharomyces cerevisiae strain for lignocellulosic biofuel production. Biotechnol Biofuels. 2018;11(1):268.

Long MR, Ong WK, Reed JL. Computational methods in metabolic engineering for strain design. Curr Opin Biotechnol. 2015;34:135–41.

Shabestary K, Hudson EP. Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis. Metabolic Eng Commun. 2016;3:216–26.

Roointan A, Morowvat MH. Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production. Biotechnol Genet Eng Rev. 2016;32(1–2):74–91.

Rollin JA, del Campo JM, Myung S, Sun F, You C, Bakovic A, Castro R, Chandrayan SK, Wu C-H, Adams MW. High-yield hydrogen production from biomass by in vitro metabolic engineering: mixed sugars coutilization and kinetic modeling. Proc Natl Acad Sci. 2015;112(16):4964–9.

Jojima T, Noburyu R, Sasaki M, Tajima T, Suda M, Yukawa H, Inui M. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2015;99(3):1165–72.

Cho S, Shin J, Cho B-K. Applications of CRISPR/Cas system to bacterial metabolic engineering. Int J Mol Sci. 2018;19(4):1089.

Agati G, Foschi L, Grossi N, Guglielminetti L, Cerovic ZG. Fluorescence-based versus reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia matrella turfgrasses. Eur J Agronomy. 2013;45:39–51.

Zhang S, Guo F, Yan W, Dai Z, Zhou J, Dong W, Jiang M, Zhang W, Xin F. Recent advances of CRISPR-Cas9-based genetic engineering in industrial biology. Front Bioeng Biotechnol. 2019;7:459.

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471(7340):602–7.

Luo ML, Mullis AS, Leenay RT, Beisel CL. Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res. 2015;43(1):674–81.

Senturk S, Shirole NH, Nowak DG, Corbo V, Pal D, Vaughan A, Tuveson DA, Trotman LC, Kinney JB, Sordella R. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. Nat Commun. 2017;8(1):1–10.

Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83.

Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188(4):773–82.

Fokum E, Zabed HM, Guo Q, Yun J, Yang M, Pang H, An Y, Li W, Qi X. Metabolic engineering of bacterial strains using CRISPR/Cas9 systems for biosynthesis of value-added products. Food Biosci. 2019;28:125–32.

Moreno AM, Mali P. Therapeutic genome engineering via CRISPR-Cas systems. Wiley Interdisciplinary Rev Syst Biol Med. 2017;9(4):e1380.

d’Espaux L, Ghosh A, Runguphan W, Wehrs M, Xu F, Konzock O, Dev I, Nhan M, Gin J, Apel AR. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. Metab Eng. 2017;42:115–25.

Abdelaal AS, Jawed K, Yazdani SS. CRISPR/Cas9-mediated engineering of Escherichia coli for n-butanol production from xylose in defined medium. J Ind Microbiol Biotechnol. 2019;46(7):965–75.

Wang S, Dong S, Wang P, Tao Y, Wang Y. Genome editing in Clostridium saccharoperbutylacetonicum N1–4 with the CRISPR-Cas9 system. Appl Environ Microbiol. 2017;83(10):e00233.

Wasels F, Jean-Marie J, Collas F, López-Contreras AM, Ferreira NL. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum. J Microbiol Methods. 2017;140:5–11.

Wang Y, Chen L, Zhang W. Proteomic and metabolomic analyses reveal metabolic responses to 3-hydroxypropionic acid synthesized internally in cyanobacterium Synechocystis sp. PCC 6803. Biotechnol Biofuels. 2016;9(1):209.

Alonso-Gutierrez J, Kim E-M, Batth TS, Cho N, Hu Q, Chan LJG, Petzold CJ, Hillson NJ, Adams PD, Keasling JD. Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Metab Eng. 2015;28:123–33.

Bhandiwad A, Shaw AJ, Guss A, Guseva A, Bahl H, Lynd LR. Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production. Metab Eng. 2014;21:17–25.