Biomimetic control of vascular smooth muscle cell morphology and phenotype for functional tissue‐engineered small‐diameter blood vessels

Journal of Biomedical Materials Research - Part A - Tập 88A Số 4 - Trang 1104-1121 - 2009
Mary B. Chan‐Park1, Jin Shen2, Ye Cao1, Yun Xiong1, Yunxiao Liu1, Shahrzad Rayatpisheh1, Gavin Chun‐Wei Kang1, Howard P. Greisler3,4,5
1School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore
2School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore
3Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, Maywood, Illinois, 60153
4Department of Surgery and Research Service,Hines VA Hospital, Hines, Illinois 60141
5Department of Surgery, Loyola University Medical Center, Maywood, Illinois, 60153

Tóm tắt

Abstract

Small‐diameter blood vessel substitutes are urgently needed for patients requiring replacements of their coronary and below‐the‐knee vessels and for better arteriovenous dialysis shunts. Circulatory diseases, especially those arising from atherosclerosis, are the predominant cause of mortality and morbidity in the developed world. Current therapies include the use of autologous vessels or synthetic materials as vessel replacements. The limited availability of healthy vessels for use as bypass grafts and the failure of purely synthetic materials in small‐diameter sites necessitate the development of a biological substitute. Tissue engineering is such an approach and has achieved promising results, but reconstruction of a functional vascular tunica media, with circumferentially oriented contractile smooth muscle cells (SMCs) and extracellular matrix, appropriate mechanical properties, and vasoactivity has yet to be demonstrated. This review focuses on strategies to effect the switch of SMC phenotype from synthetic to contractile, which is regarded as crucial for the engineering of a functional vascular media. The synthetic SMC phenotype is desired initially for cell proliferation and tissue remodeling, but the contractile phenotype is then necessary for sufficient vasoactivity and inhibition of neointima formation. The factors governing the switch to a more contractile phenotype with in vitro culture are reviewed. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009

Từ khóa


Tài liệu tham khảo

www.hhs.gov/reference/newfuture.shtml.

http://www.cdc.gov/nchs/fastats/deaths.html.

Causes of death in the EU25:Significant differences among Member States. Eurostat news release July 18 2006. 96/2006

Population projections 2004–2050 EU25 population rises until 2025 then falls.Eurostat news release April 8 2005. 48/2005

10.1016/S0094-1298(03)00069-5

http://www.idf.org/home/index.cfm?node=264.

Allender S, 2008, Coronary Heart Disease Statistics

10.1016/S1078-5884(05)80206-0

10.1016/j.jvs.2004.12.026

10.1016/j.biomaterials.2004.07.006

10.1002/bjs.5343

10.1111/j.1582-4934.2007.00099.x

10.2174/138920107779941426

10.1007/s11517-007-0176-z

10.1161/01.RES.0000196867.12470.84

10.1016/S1054-8807(03)00086-3

10.1146/annurev.bioeng.3.1.225

10.1016/B978-012436636-7/50143-9

10.1089/ten.2005.11.778

10.1056/NEJM198601023140101

10.1080/10623320601061615

10.1046/j.1525-1594.2002.06841.x

10.1053/ejvs.2002.1654

10.1002/bjs.5256

10.1161/01.RES.0000073844.41372.38

10.1114/1.1603260

US Renal Data System. Annual data report:Atlas of end‐stage renal disease in the United States. National Institute of Health and of National Institute of Diabetics and Digestive and Kidney Disease Bethesda MD USA 2003.

10.1038/ncpcardio0930

10.1038/sj.bjp.0705457

10.1126/science.2934816

10.1067/mva.2003.88

10.1016/0142-9612(96)85573-6

10.1115/1.429652

L'Heureux N, 1993, In vitro construction of a human blood‐vessel from cultured vascular cells: A morphologic study, J Vasc Surg, 17, 499, 10.1016/0741-5214(93)90150-K

10.1114/1.275

10.1016/S0945-053X(03)00052-0

10.1152/ajpheart.00479.2004

10.1016/j.jvs.2004.03.033

10.1038/nm0901-1035

10.1016/j.biomaterials.2003.10.040

10.1097/01.MAT.0000160872.41871.7E

10.1038/15062

10.1096/fsb2fasebj.12.1.47

10.1126/science.284.5413.489

10.1016/j.cardiores.2006.02.021

10.1016/S0140-6736(05)66735-9

10.1089/ten.2007.0196

Vacanti JP, 1997, Principles of Tissue Engineering, 3

Nerem RM, 2003, Role of mechanics in vascular tissue engineering, Biorheology, 40, 281

10.1016/S1054-8807(02)00183-7

10.1046/j.1365-2168.2000.01566.x

10.1016/S1350-4533(02)00010-3

Mitchell RN, 2005, Robbins and Cotran Pathologic Basis of Disease, 124

10.1016/S1357-2725(02)00075-4

10.1016/0741-5214(94)90291-7

10.1097/00002480-199709000-00034

10.1016/S0890-5096(06)60447-0

10.1097/00000658-197907000-00019

Stanley JC, 1982, Enhanced patency of small‐diameter, externally supported Dacron iliofemoral grafts seeded with endothelial cells, Surgery, 92, 994

10.1067/mva.1984.avs0010279

10.1016/S0741-5214(94)70083-4

10.1016/S0039-6060(99)70025-5

10.1006/jsre.1994.1189

10.1016/S0002-9610(99)80270-0

10.1053/ejvs.2001.1316

10.1016/j.tibtech.2005.06.006

10.1046/j.1365-2613.2000.00155.x

10.1016/S0092-8674(00)81801-2

10.1016/S0369-8114(01)00151-1

10.1172/JCI4487

10.1038/30522

10.1016/S0945-053X(00)00099-8

10.1007/BF03085963

10.1016/S0945-053X(00)00080-9

10.1016/j.mvr.2006.10.005

10.1106/NA5T-J57A-JTDD-FD04

10.1152/physrev.1995.75.3.487

10.1152/physrev.1979.59.1.1

10.1016/S1050-1738(03)00106-3

10.1097/00041433-200410000-00010

10.1016/S1054-8807(02)00125-4

10.1114/1.1558031

10.1152/japplphysiol.01114.2004

10.1111/j.1749-6632.2002.tb03068.x

10.1159/000025622

10.1161/01.RES.67.1.175

10.1111/j.1432-0436.1989.tb00743.x

10.1083/jcb.135.6.1633

10.1161/01.RES.0000207408.31270.db

10.1159/000071886

10.1146/annurev.bioeng.6.040803.140040

10.1038/35008607

10.1091/mbc.11.3.1047

10.1126/science.1064829

10.1016/j.cardiores.2003.11.015

10.1161/01.RES.79.4.631

10.1016/j.atherosclerosis.2005.12.017

10.1161/01.ATV.0000163183.27658.4b

10.1096/fasebj.9.10.7615160

10.1111/j.1582-4934.2007.00031.x

10.1111/j.1469-7580.2006.00633.x

10.1007/s10439-005-8159-4

10.1016/S0008-6363(01)00399-6

10.1177/002215549704500608

10.1161/01.RES.88.5.460

10.1016/j.semcancer.2005.05.004

10.1016/S1359-6101(96)00048-2

10.1016/S0014-2999(99)00763-3

10.1016/j.cardiores.2007.02.022

10.1038/nbt1101-1019

10.1152/physrev.00041.2003

10.1152/ajpheart.00280.2003

10.1016/S0142-9612(01)00051-5

10.1128/MCB.19.4.2958

10.1007/s00401-007-0228-3

10.1016/S0006-291X(02)00331-5

10.1016/S0142-9612(00)00196-4

10.1529/biophysj.107.105841

10.1111/j.1749-6632.2002.tb03090.x

10.1146/annurev.ph.48.030186.001455

10.1016/0021-9150(81)90145-3

10.1006/jsre.1996.4978

10.1016/S0021-9290(02)00441-4

10.1083/jcb.123.3.741

10.1006/excr.1999.4595

Stegemann JP, 2001, Effect of mechanical stimulation on smooth muscle cell proliferation and phenotype, Bioengineering Conference ASME, 50, 609

10.1038/13671

10.1002/(SICI)1097-4652(199703)170:3<228::AID-JCP2>3.0.CO;2-Q

10.1038/scientificamerican0499-60

10.1114/1.1415522

10.1088/0031-9155/46/4/201

10.1111/j.1365-2184.2004.00306.x

10.1016/S0014-4827(02)00041-1

10.1385/0-89603-516-6:349

10.1023/A:1014211627166

10.1023/A:1009949704750

10.1021/bp980031m

10.1007/s11626-999-0050-4

10.1002/1097-4636(200110)57:1<15::AID-JBM1136>3.0.CO;2-N

Ra HJ, 1999, Muscle cell peeling from micropatterned collagen: Direct probing of focal and molecular properties of matrix adhesion, J Cell Sci, 112, 1425, 10.1242/jcs.112.10.1425

10.1016/S0006-291X(03)01285-3

10.1016/j.actbio.2004.08.003

10.1089/ten.2006.12.2229

10.1089/ten.2006.0223

10.2741/2551

10.1182/blood.V82.1.66.bloodjournal82166

10.1161/01.CIR.0000070082.64414.B5

10.1016/j.biocel.2003.10.015

10.1172/JCI28184

10.1089/107632704323061726

10.1073/pnas.0704581104

10.1097/01.sla.0000154268.12239.ed

10.1016/j.cbpa.2007.05.030