Biomechanical evaluation of a biomimetic spinal construct
Tóm tắt
Laboratory spinal biomechanical tests using human cadaveric or animal spines have limitations in terms of disease transmission, high sample variability, decay and fatigue during extended testing protocols. Therefore, a synthetic biomimetic spine model may be an acceptable substitute. The goal of current study is to evaluate the properties of a synthetic biomimetic spine model; also to assess the mechanical performance of lateral plating following lateral interbody fusion. Three L3/4 synthetic spinal motion segments were examined using a validated pure moment testing system. Moments (±7.5 Nm) were applied in flexion-extension (FE), lateral bending (LB) and axial rotation (AR) at 1Hz for total 10000 cycles in MTS Bionix. An additional test was performed 12 hours after 10000 cycles. A ±10 Nm cycle was also performed to allow provide comparison to the literature. For implantation evaluation, each model was tested in the 4 following conditions: 1) intact, 2) lateral cage alone, 3) lateral cage and plate 4) anterior cage and plate. Results were analysed using ANOVA with post-hoc Tukey’s HSD test. Range of motion (ROM) exhibited logarithmic growth with cycle number (increases of 16%, 37.5% and 24.3% in AR, FE and LB respectively). No signification difference (p > 0.1) was detected between 4 cycles, 10000 cycles and 12 hour rest stages. All measured parameters were comparable to that of reported cadaveric values. The ROM for a lateral cage and plate construct was not significantly different to the anterior lumbar interbody construct for FE (p = 1.00), LB (p = 0.995) and AR (p = 0.837). Based on anatomical and biomechanical similarities, the synthetic spine tested here provides a reasonable model to represent the human lumbar spine. Repeated testing did not dramatically alter biomechanics which may allow non-destructive testing between many different procedures and devices without the worry of carry over effects. Small intra-specimen variability and lack of biohazard makes this an attractive alternative for in vitro spine biomechanical testing. It also proved an acceptable surrogate for biomechanical testing, confirming that a lateral lumbar interbody cage and plate construct reduces ROM to a similar degree as anterior lumbar interbody cage and plate constructs.
Tài liệu tham khảo
Wilke H-J, Jungkunz B, Wenger K, Claes LE: Spinal segment range of motion as a function of in vitro test conditions: Effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 1998,251(1):15–19. 10.1002/(SICI)1097-0185(199805)251:1<15::AID-AR4>3.0.CO;2-D
Hongo M, Gay RE, Hsu J-T, Zhao KD, Ilharreborde B, Berglund LJ, An K-N: Effect of multiple freeze–thaw cycles on intervertebral dynamic motion characteristics in the porcine lumbar spine. J Biomech 2008,41(4):916–920. 10.1016/j.jbiomech.2007.11.003
Cunningham BW, Kotani Y, McNulty PS, Cappuccino A, McAfee PC: The effect of spinal destabilization and instrumentation on lumbar intradiscal pressure: an in vitro biomechanical analysis. Spine 1997,22(22):2655–2663. 10.1097/00007632-199711150-00014
Shono Y, Kaneda K, Abumi K, McAfee PC, Cunningham BW: Stability of posterior spinal instrumentation and its effects on adjacent motion segments in the lumbosacral spine. Spine (Phila Pa 1976) 1998,23(14):1550–1558. 10.1097/00007632-199807150-00009
Kotani Y, Cunningham BW, Abumi K, McAfee PC: Biomechanical analysis of cervical stabilization systems: an assessment of transpedicular screw fixation in the cervical spine. Spine 1994,19(22):2529–2539. 10.1097/00007632-199411001-00007
Bozkus H, Chamberlain RH, Perez Garza LE, Crawford NR, Dickman CA: Biomechanical comparison of anterolateral plate, lateral plate, and pedicle screws-rods for enhancing anterolateral lumbar interbody cage stabilization. Spine (Phila Pa 1976) 2004,29(6):635–641. 10.1097/01.BRS.0000115126.13081.7D
Grubb MR, Currier BL, Shih J-S, Bonin V, Grabowski JJ, Chao EY: Biomechanical evaluation of anterior cervical spine stabilization. Spine 1998,23(8):886–892. 10.1097/00007632-199804150-00009
Richman JD, Daniel TE, Anderson DD, Miller PL, Douglas RA: Biomechanical evaluation of cervical spine stabilization methods using a porcine model. Spine 1995,20(20):2192. 10.1097/00007632-199510001-00003
Schmidt R, Richter M, Claes L, Puhl W, Wilke H-J: Limitations of the cervical porcine spine in evaluating spinal implants in comparison with human cervical spinal segments: a biomechanical in vitro comparison of porcine and human cervical spine specimens with different instrumentation techniques. Spine 2005,30(11):1275–1282. 10.1097/01.brs.0000164096.71261.c2
Kanayama MMD, Cunningham BWMS, Weis JCMD, Parker LMMD, Kaneda KMD, McAfee PCMD: The effects of rigid spinal instrumentation and solid bony fusion on spinal kinematics: a posterolateral spinal arthrodesis model. Spine 1998,23(7):767–773. 10.1097/00007632-199804010-00004
Sandén B, Olerud C, Johansson C, Larsson S: Improved bone–screw interface with hydroxyapatite coating: an in vivo study of loaded pedicle screws in sheep. Spine 2001,26(24):2673–2678. 10.1097/00007632-200112150-00008
Wilke HJ, Kettler A, Wenger KH, Claes LE: Anatomy of the sheep spine and its comparison to the human spine. Anat Rec 1997d,247(4):542–555. 10.1002/(SICI)1097-0185(199704)247:4<542::AID-AR13>3.0.CO;2-P
Wilke HJ, Kettler A, Claes LE: Are sheep spines a valid biomechanical model for human spines? Spine (Phila Pa 1976) 1997,22(20):2365–2374. 10.1097/00007632-199710150-00009
Bertollo N, Gothelf T, Walsh W: 3-Fluted orthopaedic drills exhibit superior bending stiffness to their 2-fluted rivals: Clinical implications for targeting ability and the incidence of drill-bit failure. Injury 2008,39(7):734–741. 10.1016/j.injury.2007.11.286
Bertollo N, Gothelf T, Walsh W: In vitro analysis of drill Bit designs: 2 vs 3 flutes. Bone & Joint J Orthopaedic Proc Supple 2013,95(SUPP 15):133–133.
Bougherara H, Zdero R, Mahboob Z, Dubov A, Shah S, Schemitsch E: The biomechanics of a validated finite element model of stress shielding in a novel hybrid total knee replacement. Proc Inst Mech Eng H J Eng Med 2010,224(10):1209–1219. 10.1243/09544119JEIM691
Burroughs BR, Hallstrom B, Golladay GJ, Hoeffel D, Harris WH: Range of motion and stability in total hip arthroplasty with 28-, 32-, 38-, and 44-mm femoral head sizes: an in vitro study. J Arthroplasty 2005,20(1):11–19. 10.1016/j.arth.2004.07.008
Harris ML, Morberg P, Bruce WJM, Walsh WR: An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film. J Biomech 1999,32(9):951–958. 10.1016/S0021-9290(99)00072-X
Panjabi MM, GOEL V, OXLAND T, TAKATA K, DURANCEAU J, KRAG M, PRICE M: Human lumbar vertebrae: quantitative three-dimensional anatomy. Spine 1992,17(3):299. 10.1097/00007632-199203000-00010
Pelletier M, Cordaro N, Lau A, Walsh WR: PEEK versus Ti interbody fusion devices: resultant fusion, bone apposition, initial and 26 week biomechanics. J Spinal Disord Tech 2012.
Spenciner D, Greene D, Paiva J, Palumbo M, Crisco J: The multidirectional bending properties of the human lumbar intervertebral disc. Spine J 2006,6(3):248–257. 10.1016/j.spinee.2005.08.020
Wilke HJ, Wolf S, Claes LE, Arand M, Wiesend A: Stability increase of the lumbar spine with different muscle groups. A biomechanical in vitro study. Spine 1995,20(2):192–198. 10.1097/00007632-199501150-00011
Panjabi M: Clinical spinal instability and low back pain. J Electromyogr Kinesiol 2003,13(4):371–379. 10.1016/S1050-6411(03)00044-0
White AA, Panjabi MM: Clinical Biomechanics of the Spine. Lippincott, Philadelphia; 1990.
Bess R, Cornwall G, Vance R, Bachus K, Brodke D: Biomechanics of Lateral Arthrodesis. In eXtreme Lateral Interbody Fusion (XLIF). Edited by: Goodrich JA, Volcan IJ. Quality Medical Publishing, St Louis, MO; 2008:31–40.
Cappuccino A, Cornwall GB, Turner AW, Fogel GR, Duong HT, Kim KD, Brodke DS: Biomechanical analysis and review of lateral lumbar fusion constructs. Spine (Phila Pa 1976) 2010,35(26 Suppl):S361-S367. 10.1097/BRS.0b013e318202308b
Kim SM, Lim TJ, Paterno J, Park J, Kim DH: Biomechanical comparison: stability of lateral-approach anterior lumbar interbody fusion and lateral fixation compared with anterior-approach anterior lumbar interbody fusion and posterior fixation in the lower lumbar spine. J Neurosurg Spine 2005,2(1):62–68. 10.3171/spi.2005.2.1.0062
Le Huec JC, Liu M, Skalli W, Josse L: Lumbar lateral interbody cage with plate augmentation: in vitro biomechanical analysis. Eur Spine J 2002,11(2):130–136. 10.1007/s005860100316
Au AG, Aiyangar AK, Anderson PA, Ploeg HL: Replicating interbody device subsidence with lumbar vertebraesurrogates. Proc Inst Mech Eng H 2011,225(10):972–985. 10.1177/0954411911415198
Dick JC, Zdeblick TA, Bartel BD, Kunz DN: Mechanical evaluation of cross-link designs in rigid pedicle screw systems. Spine 1997,22(4):370–375. 10.1097/00007632-199702150-00003
Murakami HH, Kawahara NN, Tomita KK, Sakamoto JJ, Oda JJ: Biomechanical evaluation of reconstructed lumbosacral spine after total sacrectomy. J Orthop Sci 2002,7(6):658–664. 10.1007/s007760200117
Penzkofer R, Hofberger S, Spiegl U, Schilling C, Schultz R, Augat P, Gonschorek O: Biomechanical comparison of the end plate design of three vertebral body replacement systems. Arch Orthop Trauma Surg 2011,131(9):1253–1259. 10.1007/s00402-011-1284-7
Stanford RE, Loefler AH, Stanford PM, Walsh WR: Multiaxial pedicle screw designs: static and dynamic mechanical testing. Spine 2004,29(4):367–375. 10.1097/01.BRS.0000092369.50397.85
Tokuhashi Y, Matsuzaki H, Shirasaki Y, Tateishi T: C1—C2 intra-articular screw fixation for atlantoaxial posterior stabilization. Spine 2000,25(3):337–341. 10.1097/00007632-200002010-00013
Wilke H-J, Russo G, Schmitt H, Claes L: A mechanical model of human spinal motion segments-Ein mechanisches modell für humane wirbelsäulenbewegungssegmente. Biomed Tech (Berl) 1997,42(11):327–331. 10.1515/bmte.1997.42.11.327
Yinger K, Scalise J, Olson SA, Bay BK, Finkemeier CG: Biomechanical comparison of posterior pelvic ring fixation. J Orthop Trauma 2003,17(7):481–487. 10.1097/00005131-200308000-00002