Biomechanical comparison between single-bundle and double-bundle anterior cruciate ligament reconstruction with hamstring tendon under cyclic loading condition
Tóm tắt
The purpose of this study was to compare the anterior tibial translation (ATT) of the anterior cruciate ligament (ACL) reconstructed-knee between single-bundle and double-bundle ACL reconstruction under cyclic loading.
Single-bundle and double-bundle reconstructions of the knee were performed sequentially in randomized order on the same side using eight human amputated knees. After each reconstruction, the reconstructed-knee was subjected to 500-cycles of 0 to 100-N anterior tibial loads using a material testing machine. The ATT before and after cyclic loading and “laxity increase”, which indicated a permanent elongation of the graft construct, was also determined.
The ATT after cyclic loading increased in both single-bundle and double-bundle reconstruction techniques compared to that without cyclic loading. Changes in ATT before and after cyclic loading were 3.9 ± 0.9 mm and 2.9 ± 0.6 mm respectively, and were significantly different. Laxity increase was also significantly different (4.3 ± 0.9 mm and 3.2 ± 0.8 mm respectively). Although no graft rupture or graft fixation failure was found during cyclic loading, the graft deviated into an eccentric position within the tunnel.
Although ATT was significantly increased in both single-bundle and double-bundle reconstruction with hamstring tendon after cyclic loading test, there was significant difference. Double-bundle reconstruction might be superior to prevent increasing ATT under cyclic loading. Deformation of hamstring tendon after cyclic loading might result in deterioration of knee stability after ACL reconstruction, and is one of disadvantages of soft tissue graft.
Từ khóa
Tài liệu tham khảo
Kocher MS, Steadman JR, Briggs KK, et al: Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med. 2004, 32: 629-634. 10.1177/0363546503261722.
Bellier G, Christel P, Colombet P, et al: Double-stranded hamstring graft for anterior cruciate ligament reconstruction. Arthroscopy. 2004, 20: 890-894.
Woo SL, Kanamori A, Zeminski J, et al: The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon. A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am. 2002, 84-A: 907-914.
Yagi M, Wong EK, Kanamori A, et al: Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med. 2002, 30: 660-666.
Girgis FG, Marshall JL, Monajem A: The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res. 1989, 106: 216-231.
Aglietti P, Giron F, Cuomo P, et al: Single-and double-incision double-bundle ACL reconstruction. Clin Orthop Relat Res. 2007, 454: 108-113.
Järvelä T: Double-bundle versus single-bundle anterior cruciate ligament reconstruction: a prospective, randomize clinical study. Knee Surg Sports Traumatol Arthrosc. 2007, 15: 500-507. 10.1007/s00167-006-0254-z.
Muneta T, Koga H, Morito T, et al: A retrospective study of the midterm outcome of two-bundle anterior cruciate ligament reconstruction using quadrupled semitendinosus tendon in comparison with one-bundle reconstruction. Arthroscopy. 2006, 22: 252-258. 10.1016/j.arthro.2005.12.008.
Siebold R: Observations on bone tunnel enlargement after double-bundle anterior cruciate ligament reconstruction. Arthroscopy. 2007, 23: 291-298. 10.1016/j.arthro.2007.01.006.
Yasuda K, Kondo E, Ichiyama H, et al: Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: comparisons among 3 different procedures. Arthroscopy. 2006, 22: 240-251. 10.1016/j.arthro.2005.12.017.
Adachi N, Ochi M, Uchio Y, et al: Reconstruction of the anterior cruciate ligament. Single- versus double-bundle multistranded hamstring tendons. J Bone Joint Surg Br. 2004, 86: 515-520.
Radford WJ, Amis AA: Biomechanics of a double prosthetic ligament in the anterior cruciate deficient knee. J Bone Joint Surg Br. 1990, 72: 1038-1043.
Fujie H, Mabuchi K, Woo SL, et al: The use of robotics technology to study human joint kinematics: a new methodology. J Biomech Eng. 1993, 115: 211-217. 10.1115/1.2895477.
Gabriel MT, Wong EK, Woo SL-Y, et al: Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res. 2004, 22: 85-89. 10.1016/S0736-0266(03)00133-5.
Mae T, Shino K, Miyama T, et al: Single- versus two-femoral socket anterior cruciate ligament reconstruction technique: biomechanical analysis using a robotic simulator. Arthroscopy. 2001, 17: 708-716. 10.1053/jars.2001.25250.
Yamamoto Y, Hsu WH, Woo SL-Y, et al: Knee stability and graft function after anterior cruciate ligament reconstruction. A comparison of a lateral and an anatomic femoral tunnel placement. Am J Sports Med. 2004, 32: 1825-1832. 10.1177/0363546504263947.
Beynnon BD, Johnson RJ: Anterior cruciate ligament injury rehabilitation in athletes: biomechanical considerations. Sports Med. 1996, 22: 54-64. 10.2165/00007256-199622010-00005.
Fu FH, Bennett CH, Lattermann C, Ma CB: Current trends in anterior cruciate ligament reconstruction. Part 1: biology and biomechanics of reconstruction. Am J Sports Med. 1999, 27: 821-830.
Giurea M, Zorilla P, Amis AA, Aichroth P: Comparative pull-out and cyclic-loading strength tests of anchorage of hamstring tendon grafts in anterior cruciate ligament reconstruction. Am J Sports Med. 1999, 27: 621-625.
Höher J, Möller HD, Fu FH: Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction?. Knee Surg Sports Traumatol Arthrosc. 1998, 6: 231-240. 10.1007/s001670050105.
Muneta T, Sekiya I, Ogiuchi T, et al: Effects of aggressive early rehabilitation on the outcome of anterior cruciate ligament reconstruction with multi-strand semitendinosus tendon. Int Orthop. 1998, 22: 352-6. 10.1007/s002640050276.
Woo SL-Y, Orlando CA, Camp JF, et al: Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech. 1986, 19: 399-404. 10.1016/0021-9290(86)90016-3.
Race A, Amis AA: Loading of the two bundles of the posterior cruciate ligament: an analysis of bundle function in A-P drawer. J Biomechanics. 1996, 29: 873-879. 10.1016/0021-9290(95)00161-1.
Scheffler SU, Südkamp NP, Göckenjan A: Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: The impact of fixation level and fixation method under cyclic loading. Arthroscopy. 2002, 18: 304-315. 10.1053/jars.2002.30609.
Shino K, Mae T, Maeda A, et al: Graft fixation with predetermined tension using a new device, the double spike plate. Arthroscopy. 2002, 18: 908-911. 10.1053/jars.2002.35267.
Höher J, Scheffler SU, Withrow JD, et al: Mechanical behavior of two hamstring graft constructs for reconstruction of the anterior cruciate ligament. J Orthop Res. 2000, 18: 456-461. 10.1002/jor.1100180319.
Ishibashi Y, Rudy TW, Livesay GA, et al: The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: evaluation using a robotic testing system. Arthroscopy. 1997, 13: 177-182. 10.1016/S0749-8063(97)90152-3.
Staerke C, Möhwald A, Gröbel KH, et al: ACL graft migration under cyclic loading. Knee Surg Sports Traumatol Arthrosc. 2010, 18: 1065-1070. 10.1007/s00167-009-0970-2.
Tsuda E, Fukuda Y, Loh JC, et al: The effect of soft-tissue graft fixation in anterior cruciate ligament reconstruction on graft-tunnel motion under anterior tibial loading. Arthroscopy. 2002, 18: 960-967. 10.1053/jars.2002.36112.
van Eck CF, Lesniak BP, Schreiber VM, Fu FH: Anatomic single- and double-bundle anterior cruciate ligament reconstruction flowchart. Arthroscopy. 2010, 26: 258-268. 10.1016/j.arthro.2009.07.027.
Hutchinson MR, Ash SA: Resident's ridge: assessing the cortical thickness of the lateral wall and roof of the intercondylar notch. Arthroscopy. 2003, 19: 931-935. 10.1016/j.arthro.2003.09.002.
Hiraga Y, Ishibashi Y, Tsuda E, et al: Biomechanical comparison of posterior cruciate ligament reconstruction techniques using cyclic loading tests. Knee Surg Sports Traumatol Arthrosc. 2006, 14: 13-19. 10.1007/s00167-005-0633-x.
Rodeo SA, Kawamura S, Kim HJ, et al: Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion?. Am J Sports Med. 2006, 34: 1790-1800. 10.1177/0363546506290059.
Spindler KP, Kuhn JE, Freedman KB, et al: Anterior cruciate ligament reconstruction autograft choice: bone-tendon-bone versus hamstring. Does it really matter? A systematic review. Am J Sports Med. 2004, 32: 1986-1995. 10.1177/0363546504271211.
Magen HE, Howell SM, Hull ML: Structural properties of six tibial fixation methods for anterior cruciate ligament soft tissue grafts. Am J Sports Med. 1999, 27: 35-43.