Biomaterials in orthopaedics

Journal of the Royal Society Interface - Tập 5 Số 27 - Trang 1137-1158 - 2008
Melba Navarro1, Alexandra Michiardi1, Óscar Castaño1, Josep A. Planell1
1Biomaterials, Implants and Tissue Engineering, Institute for Bioengineering of Catalonia (IBEC), CIBER-BBN, 08028 Barcelona, Spain.

Tóm tắt

At present, strong requirements in orthopaedics are still to be met, both in bone and joint substitution and in the repair and regeneration of bone defects. In this framework, tremendous advances in the biomaterials field have been made in the last 50 years where materials intended for biomedical purposes have evolved through three different generations, namely first generation (bioinert materials), second generation (bioactive and biodegradable materials) and third generation (materials designed to stimulate specific responses at the molecular level). In this review, the evolution of different metals, ceramics and polymers most commonly used in orthopaedic applications is discussed, as well as the different approaches used to fulfil the challenges faced by this medical field.

Từ khóa


Tài liệu tham khảo

10.1016/S0142-9612(97)00155-5

10.1016/0142-9612(84)90001-2

10.1002/jbm.820120104

10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-J

Agrawal C.M, 1995, Encyclopedic handbook of biomaterials and bioengineering. Part A. Materials, 1055

10.1016/j.biomaterials.2004.09.044

10.1007/BF01565462

10.1007/BF02402799

10.1016/j.biomaterials.2003.10.066

10.1007/BF00058561

10.1243/0954411981533863

10.1002/jbm.820250808

10.1002/jbm.820270713

10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J

10.1016/S0142-9612(02)00314-9

10.1016/S0142-9612(03)00298-9

Artzi Z, 2004, Biomaterial resorbability and healing site morphology of inorganic bovine bone and beta tricalcium phosphate in the canine. A 24-month longitudinal histologic study and morphometric analysis, Int. J. Oral Maxillofac. Implants, 19, 357

10.1002/jbm.b.10530

10.1002/jbm.b.10531

10.1016/S0079-6425(00)00002-5

10.1097/00007632-199505000-00012

10.1016/S1067-2516(97)80054-3

10.1016/S0363-5023(96)80197-3

10.1007/s002560050552

10.2106/00004623-198466030-00008

10.1016/S0142-9612(97)00218-4

10.1002/9780470294758.ch90

10.1016/0141-5425(88)90110-0

10.1016/0142-9612(81)90050-8

Bono C, 2004, Advances in spinal fusion: molecular science, biomechanics, and clinical management, 33

Boutin P, 1972, Total arthroplasty of the hip by fritted aluminum prosthesis. Experimental study and 1st clinical applications, Rev. Chir. Orthop. Reparatrice Appar. Mot, 58, 229

10.1146/annurev.matsci.31.1.357

10.1002/jbm.820070204

10.1016/0142-9612(92)90035-M

10.1159/000142601

Bromer H, 1977, Properties of the bioactive implant material ceravital, Sci. Ceram, 9, 219

Brunon J, 1994, Anterior osteosynthesis of the cervical spine by phusiline bioabsorbable screws and plates. Initial results apropos of 5 cases, Neurochirurgie, 40, 196

10.1016/0029-8018(68)90019-X

10.1097/00013611-199806000-00018

10.1016/S1067-2516(98)80009-4

10.1002/(SICI)1097-4636(199609)32:1<111::AID-JBM13>3.0.CO;2-P

10.1016/S0945-053X(03)00012-X

10.1097/01.scs.0000244921.07383.cc

10.1016/0272-8842(95)00126-3

10.1111/j.1600-051X.1998.tb02373.x

10.1126/science.167.3916.279

10.1080/714975801

10.1302/0301-620X.42B1.28

10.1023/A:1008945017668

10.1002/jbm.820290910

10.1016/j.joca.2006.04.007

10.1111/j.1151-2916.1995.tb08887.x

Chow L.C, 1991, Self-setting calcium phosphate cements, Mater. Res. Soc. Symp. Proc, 179, 3

10.1111/j.1749-6632.1988.tb38516.x

10.4028/www.scientific.net/MSF.327-328.55

10.5435/00124635-200109000-00001

10.4028/www.scientific.net/KEM.192-195.621

Clèries L. 1999 In vitro studies of calcium phosphate coatings obtained by laser ablation. PhD thesis Universitat de Barcelona.

10.1021/bc00024a016

10.1126/science.7892603

Cook S.S.D, 1988, Hydroxyapatite-coated porous titanium for use as an orthopaedic biological attachment system, Clin. Orthop, 230, 303

10.1016/0142-9612(92)90187-S

10.1302/0301-620X.86B4.14368

10.1007/BF00705368

D'Avis P, 1998, Potent, integrin selective RGD-containing peptides promote cell-specific adhesion on three dimensional collagen matrices, Trans. Soc. Biomater, 100

10.1016/S0142-9612(98)00161-6

10.1016/0003-9969(74)90155-1

De Groot K. Klein C. P. Wolke J. G. & Blieck-Hogervorst J. M. 1990 Plasma-sprayed coatings of calcium phosphate. In CRC handbook of bioactive ceramics vol. II (eds T. Yamamuro L. L. Hench & J. Wilson) pp 133–142 Boca Raton FL: CRC Press Inc.

10.1016/j.biomaterials.2006.06.028

10.1243/0954411981534196

10.1016/S0142-9612(02)00151-5

10.1016/0142-9612(90)90005-B

Duerig T.W, 1994, Materials properties handbook: titanium alloys, 1035

Duerig T.W, 1996, The utility of superelasticity in medicine, Biomed. Mater. Eng, 6, 255

10.1016/0142-9612(96)84671-0

10.1016/0363-5023(93)90100-H

10.1586/17434440.2.1.87

10.1016/S0142-9612(97)00217-2

10.1023/A:1008901512273

10.1097/00007632-199212000-00006

Ferraz M.P, 2004, Hydroxyapatite nanoparticles: a review of preparation methodologies, J. Appl. Biomater. Biomech, 2, 74

10.1002/jbm.820271204

10.1002/(SICI)1097-4636(199604)30:4<509::AID-JBM9>3.0.CO;2-T

10.1243/PIME_PROC_1991_205_271_02

Friberg L Nordberg G.F& Vouk V.B Handbook on the toxicology of metals. 1979 Amsterdam The Netherlands:Elsevier/North-Holland Biomedical.

Fujishiro Y. Oonishi H. & Hench L. L. 1997 Quantitative comparison of in vivo bone generation with particulate Bioglass ® . In Bioceramics vol. 10 (eds L. Sedel & C. Rwy) pp. 283–286. New York NY: Elsevier.

10.1016/j.stam.2005.10.008

10.1089/ten.1997.3.197

10.1002/(SICI)1097-4636(199804)40:1<48::AID-JBM6>3.0.CO;2-R

10.1016/j.dental.2006.03.003

10.1177/00220345970760041201

10.1016/j.jconrel.2006.04.007

10.1002/jbm.a.30886

10.1016/j.otohns.2005.01.023

10.1002/1097-4636(20010305)54:3<320::AID-JBM20>3.0.CO;2-E

10.1016/0142-9612(96)85755-3

10.1097/00003086-199706000-00011

10.1002/jor.1100120219

10.1016/0142-9612(95)93258-F

10.1002/(SICI)1097-4636(1999)48:4<393::AID-JBM1>3.0.CO;2-C

Gross U, 1988, The response of bone to surface active glass/glass–ceramics, CRC Crit. Rev. Biocompat, 4, 2

10.1002/jbm.a.30743

10.1586/17434440.4.3.405

Gummel J, 1983, Mechanically processable bioactive glass ceramics–a new biomaterial for bone replacement, Z. Exp. Chir. Transplant Kunstliche Organe, 16, 338

Hardouin P, 2000, Tissue engineering and skeletal diseases, Joint Bone Spine, 67, 419

10.1002/pola.21873

10.1016/0142-9612(96)85764-4

10.1126/science.6246576

10.1016/0272-8842(91)90015-R

10.1126/science.1067404

Hench L.L& Wilson J Introduction to bioceramics. 1993 Singapore:World Scientific.

Hench L.L, 1975, Interfacial behaviour of ceramic implants, Natl Bur. Stand. Spec. Publ, 415, 19

10.1023/A:1008643303888

10.1002/jbm.820280308

10.1016/S0142-9612(03)00343-0

10.1016/S0363-5023(96)80198-5

10.1016/S0167-7799(01)01840-6

10.1002/jbm.820190311

Huiskes R, 1992, The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials, Clin. Orthop. Relat. Res, 274, 124, 10.1097/00003086-199201000-00014

Hutmacher D, 2000, A review of material properties of biodegradable and bioresorbable polymer for GTR and GBR, J. Oral Maxillofac. Implants, 11, 667

10.1016/S0142-9612(03)00558-1

10.1007/PL00020328

10.1016/S0022-3093(00)00442-7

10.1007/BF01358748

10.1016/0022-3093(89)90495-X

10.1016/S0142-9612(03)00190-X

10.1002/(SICI)1097-4636(199612)32:4<687::AID-JBM23>3.0.CO;2-9

10.1016/S0142-9612(98)00202-6

10.2106/00004623-199301000-00002

Klawitter J.J, 1971, Application of porous ceramics for the attachment of load-bearing internal orthopedic applications, Cell Transplant, 3, 339

10.1016/0142-9612(91)90194-F

10.1007/BF01133359

10.1111/j.1151-2916.1996.tb08561.x

10.1002/(SICI)1527-2648(200004)2:4<159::AID-ADEM159>3.0.CO;2-O

Kuhn K.D Bone cements: up-to-date comparison of physical and chemical properties of commercial materials. 2000 Berlin Germany:Springer.

10.1001/archsurg.1966.01330050143023

10.1002/jbm.820050305

10.1016/S0142-9612(02)00433-7

10.1016/S0142-9612(96)00162-7

10.1016/j.biomaterials.2005.05.073

10.1016/j.biomaterials.2006.04.041

10.1002/(SICI)1097-4636(1999)48:3<289::AID-JBM12>3.0.CO;2-L

10.1002/(SICI)1097-4636(199722)38:2<155::AID-JBM10>3.0.CO;2-C

10.1002/(SICI)1097-4636(199721)38:1<55::AID-JBM8>3.0.CO;2-G

10.1002/jbm.b.30398

10.1002/(SICI)1097-4636(1999)48:3<342::AID-JBM20>3.0.CO;2-7

10.1002/jbm.820271205

10.1016/S0142-9612(97)00226-3

10.1021/ma00089a031

10.1016/0022-3093(90)90247-J

10.1002/jbm.820280103

10.1002/jbm.820280103

10.4028/www.scientific.net/KEM.218-220.51

10.1016/j.biomaterials.2005.08.033

10.1016/j.biomaterials.2007.02.020

10.1002/(SICI)1097-4636(199704)35:1<75::AID-JBM7>3.0.CO;2-J

10.1016/S0142-9612(97)00146-4

10.1002/jbm.10470

10.1093/jb/mvm077

10.2106/00004623-199509000-00022

10.1002/jab.770050403

10.1002/(SICI)1097-4636(199801)39:1<161::AID-JBM18>3.0.CO;2-I

10.1016/S0142-9612(01)00281-2

10.1016/j.apsusc.2006.04.047

10.1302/0301-620X.48B2.245

10.1902/jop.1985.56.2.63

10.1097/00003086-199603000-00014

10.1002/jbm.820271212

Michaeli W. & Von Oepen R. 1994 Processing of degradable polymers. In ANTEC pp. 796–804.

10.1016/S0142-9612(00)00101-0

10.1002/jbm.820150204

10.1016/0142-9612(93)90049-8

10.1023/A:1011260224120

10.1016/0142-9612(96)87284-X

10.1163/156856297X00263

10.22203/eCM.v011a02

Mulliez M. A.& Wenz R. 2002 Physical-chemical characterization of a new magnesium containing calcium phosphate cement SOPRIM ® . In Proc. 17th European Society for Biomaterials Conference Barcelona Spain 11–14 September poster L49.

10.1016/j.jbiotec.2006.09.025

10.1083/jcb.113.5.981

10.1111/j.1151-2916.2003.tb03474.x

10.1016/j.biomaterials.2003.11.012

10.1023/B:JMSM.0000021113.88702.9d

10.1016/j.actbio.2005.03.004

10.1002/jbm.820270805

10.1002/jbm.820140107

10.1002/jbm.820251105

10.1002/(SICI)1097-4636(199704)35:1<39::AID-JBM5>3.0.CO;2-N

10.1177/036354658801600602

10.1023/A:1021114710076

10.1097/00001665-200305000-00005

10.1016/j.jeurceramsoc.2006.10.016

10.1097/01.BRS.0000076898.37566.32

10.1007/BF02484413

Podoshin L, 1988, Long-term histologic study of a new carbon–carbon ossicular replacement prosthesis, Am. J. Otol, 9, 366

10.1007/s00586-007-0506-8

10.1002/(SICI)1097-4636(199810)42:1<117::AID-JBM15>3.0.CO;2-I

10.1016/S0266-3538(00)00241-4

10.1016/j.ijpharm.2004.01.021

Ratner B.D Hoffman A.S& Schoen F.J Biomaterials science. An introduction to materials in medicine. 2nd edn. 2004 Amsterdam The Netherlands/New York NY:Elsevier/Academic Press.

10.1007/s10856-006-0693-6

10.2174/1389201003379031

10.1163/156856207779996904

Rokkanen P.U, 1998, Bioabsorbable fixation devices in orthopaedics and traumatology, Ann. Chir. Gyn, 87, 13

10.1097/00006534-199710000-00043

Russell J.L, 1999, Clinical utility of demineralized bone matrix for osseous defects, arthrodesis, and reconstruction: impact of processing techniques and study methodology, Orthopedics, 22, 524

Ryhänen J. 1999 Biocompatibility evaluation of nickel–titanium shape memory metal alloy. PhD thesis University of Oulu Finland.

10.1111/j.1151-2916.1953.tb12837.x

10.1016/j.biomaterials.2007.11.002

10.1111/j.1365-2842.1991.tb01689.x

Schuh A, 2004, Surface characterization of Al2O3-blasted titanium implants in total hip arthroplasty, Orthopade, 33, 905

10.1002/(SICI)1097-4636(19980905)41:3<431::AID-JBM13>3.0.CO;2-L

10.4028/www.scientific.net/KEM.192-195.635

Shabalovskaya S.A, 1996, On the nature of biocompatibility and on medical applications of NiTi shape memory and superelastic alloys, Biol. Med. Mater. Eng, 6, 267, 10.3233/BME-1996-6405

10.1016/0142-9612(88)90065-8

10.1002/jbm.a.10126

10.1016/S0142-9612(00)00113-7

Stanley H.R, 1997, Using 45S5 bioglass cones as endosseous ridge maintenance implant to prevent alveolar ridge resorption: a 5 year evolution, Int. J. Maxillofac. Implants, 12, 95

Steinmann S. G. 1985 Corrosion of titanium and titanium alloys for surgical implants. Titanium'84 science and technology vol. 2 p. 1373. Munich Germany: Deutsche Gesellschaft für Mettallkunde EV.

10.1016/j.biomaterials.2005.05.046

Subach B. R. Haid R. W. Rodts G. E. & Alexander J. T. 1999 Postrior lumbar interbody fusion (PLIF) using an impacted bioabsorbable device. In American Association of Neurological Surgeons Proceedings of the Congress of Neurological Surgeons .

10.1002/jbm.1056

Sutula L.C, 1995, Impact of gamma sterilization on clinical performance of polyethylene in the hip, Clin. Orthop, 319, 28

10.2319/083105-306

10.1016/S0039-6109(16)38639-X

10.1016/j.biomaterials.2003.10.007

10.1016/S0142-9612(97)00119-1

10.1016/j.biomaterials.2004.09.046

10.1016/j.biomaterials.2005.12.014

10.1016/j.spinee.2004.07.012

10.1016/S0142-9612(00)00290-8

10.1002/(SICI)1097-4636(19970305)34:3<305::AID-JBM5>3.0.CO;2-O

10.1016/S0142-9612(99)00213-6

10.1002/(SICI)1097-4636(199710)37:1<81::AID-JBM10>3.0.CO;2-T

10.1016/0142-9612(96)00009-9

10.1007/978-3-642-56486-4_10

10.4028/www.scientific.net/KEM.192-195.769

10.1016/j.biomaterials.2007.10.043

10.1016/0267-6605(92)90081-4

10.1016/j.biomaterials.2006.01.057

10.1097/00007632-199808150-00016

10.1002/jbm.a.10414

Unger R. E. Peters K. Assad M. Schrooten J. Kirkpatrick C. J. 2004 Endothelial cell compatibility of porous nitinol. In Transactions—7th World Biomaterials Congress p. 1538.

10.1016/S1529-9430(02)00412-6

10.1016/S0142-9612(02)00537-9

10.1097/00007632-200204010-00003

10.1034/j.1600-0501.2002.130112.x

10.1007/BF00701240

Villermaux F. 2000 Zirconia–alumina as the new generation of ceramic–ceramic THP: wear performance evaluation including extreme life conditions. In Transactions of the Sixth World Biomaterials Congress Society for Biomaterials.

10.1016/S0142-9612(00)00191-5

10.1016/0267-6605(92)90080-D

10.1177/096368979600500405

10.1016/0043-1648(71)90032-9

10.1002/jbm.820271012

10.1007/s00586-006-0282-x

10.1007/BF00208837

10.1002/(SICI)1097-4636(20000305)49:3<362::AID-JBM9>3.0.CO;2-S

10.1016/S1359-6462(01)01132-0

10.1023/A:1018512612695

10.1002/(SICI)1097-4636(19970315)34:4<539::AID-JBM14>3.0.CO;2-7

10.1002/jbm.820090406

10.1016/0266-7681(93)90203-R

10.1021/la980257z

Xiao S.J Kenausis G& Textor M Biochemical modification of titanium surfaces. 2001 Berlin Germany:Springer.

10.1016/S0142-9612(03)00061-9

10.1089/107632701753337645

10.1016/j.jallcom.2003.12.016

10.1002/1097-4636(2001)58:3<270::AID-JBM1016>3.0.CO;2-2