Biomass productivity and characterization of Tetradesmus obliquus grown in a hybrid photobioreactor

Leonardo Rubi Rörig1, Pablo Diego Gressler1, Deise Parolo Tramontin2, Rosana de Cassia de Souza Schneider3, Roberto Bianchini Derner4, Eduardo de Oliveira Bastos1, Maiara Priscilla de Souza3, Carlos Yure B. Oliveira1
1Laboratório de Ficologia, Universidade Federal de Santa Catarina–UFSC, Florianópolis, Brazil
2Laboratório de Sistemas Porosos, Universidade Federal de Santa Catarina–UFSC, Florianópolis, Brazil
3Centro de Excelência em Produtos e Processos Oleoquímicos e Biotecnológicos, Universidade de Santa Cruz do Sul–UNISC, Santa Cruz do Sul, Brazil
4Laboratório de Cultivo de Algas, Universidade Federal de Santa Catarina–UFSC, Florianópolis, Brazil

Tóm tắt

In this study, the effects of CO2 addition on the growth performance and biochemical composition of the green microalga Tetradesmus obliquus cultured in a hybrid algal production system (HAPS) were investigated. The HAPS combines the characteristics of tubular photobioreactors (towards a better carbon dioxide dissolution coefficient) with thin-layer cascade system (with a higher surface-to-volume ratio). Experimental batches were conducted with and without CO2 addition, and evaluated in terms of productivity and biomass characteristics (elemental composition, protein and lipid contents, pigments and fatty acids profiles). CO2 enrichment positively influenced productivity, and proteins, lipids, pigments and unsaturated fatty acids contents in biomass. The HAPS herein presented contributes to the optimization of microalgae cultures in open systems, since it allows, with a simple adaptation—a transit of the cultivation through a tubular portion where injection and dissolution of CO2 is efficient—to obtain in TLC systems, greater productivity and better-quality biomass.

Từ khóa


Tài liệu tham khảo

Goswami RK, Mehariya S, Karthikeyan OP, Gupta VK, Verma P (2022) Multifaceted application of microalgal biomass integrated with carbon dioxide reduction and wastewater remediation: a flexible concept for sustainable environment. J Clean Prod. 339:130654. https://doi.org/10.1016/j.jclepro.2022.130654 Perez-Garcia O, Escalante FM, De-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36. https://doi.org/10.1016/j.watres.2010.08.037 Oliveira CYB, Jacob A, Nader C, Oliveira CDL, Matos ÂP, Araújo ES, Shabnam N, Ashok B, Gálvez AO (2022) An overview on microalgae as renewable resources for meeting sustainable development goals. J Environ Manag 320:115897. https://doi.org/10.1016/j.jenvman.2022.115897 Wang Q, Han W, Jin W, Gao S, Zhou X (2021) Docosahexaenoic acid production by Schizochytrium sp.: review and prospect. Food Biotechnol. 35(2):111–135. https://doi.org/10.1080/08905436.2021.1908900 Xu Y (2022) Biochemistry and Biotechnology of Lipid Accumulation in the Microalga Nannochloropsis oceanica. J Agric Food Chem 70(37):11500–11509. https://doi.org/10.1021/acs.jafc.2c05309 Hegewald E, Bock C, Krienitz L (2013) A phylogenetic study on Scenedesmaceae with the description of a new species of Pectinodesmus and the new genera Verrucodesmus and Chodatodesmus (Chlorophyta, Chlorophyceae). Fottea 13(2):149–164. https://doi.org/10.5507/fot.2013.013 Oliveira CYB, Oliveira CDL, Prasad R, Ong HC, Araujo ES, Shabnam N, Gálvez AO (2021) A multidisciplinary review of T. obliquus: a microalga suitable for large-scale biomass production and emerging environmental applications. Rev Aquac 13(3):1594–1618. https://doi.org/10.1111/raq.12536 Choix FJ, Polster E, Corona-González RI, Snell-Castro R, Méndez-Acosta HO (2017) Nutrient composition of culture media induces different patterns of CO2 fixation from biogas and biomass production by the microalga Scenedesmus obliquus U169. Bioprocess Biosyst Eng 40:1733–1742. https://doi.org/10.1007/s00449-017-1828-5 Khan SA, Sharma GK, Malla FA, Kumar A, Rashmi GN (2019) Microalgae based biofertilizers: a biorefinery approach to phycoremediate wastewater and harvest biodiesel and manure. J Clean Prod 211:1412–1419. https://doi.org/10.1016/j.jclepro.2018.11.281 Martı́nezSánchezJiménezYousfi Muñoz MESJMFEIL (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 73:263–272. https://doi.org/10.1016/S0960-8524(99)00121-2 Kessler E (1991) Scenedesmus: problems of a highly variable genus of green algae. Botânica Acta 104:169–171. https://doi.org/10.1111/j.1438-8677.1991.tb00213.x Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N P and metal removal: a review. Biometals 15:377–390. https://doi.org/10.1023/A:1020238520948 Shen Y, Jarboe L, Brown R, Wen Z (2015) A thermochemical-biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Chemosphere 238:1–14. https://doi.org/10.1016/j.chemosphere.2019.124680 Tramontin DP, Gressler PD, Rörig LR, Derner RB, Pereira-Filho J, Radetski CM, Quadri MB (2018) Growth modeling of the green microalga Scenedesmus obliquus in a hybrid photobioreactor as a practical tool to understand both physical and biochemical phenomena in play during algae cultivation. Biotechnol Bioeng 115:965–977. https://doi.org/10.1002/bit.26510 Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293. https://doi.org/10.1007/s002530100702 Borowitzka MA, Moheimani NR (eds) (2013) Algae for biofuels and energy (Vol. 5). Springer, Dordrecht, pp 133–152 Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506. https://doi.org/10.1021/bp060065r Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. https://doi.org/10.1263/jbb.101.87 Richmond A (Ed) (2004) Handbook of microalgal mass culture: biotechnology and applied phycology, First edit, Blackwell Publishing. https://doi.org/10.1002/9780470995280 Borowitzka MA (1999) Commercial production of microalgae: ponds, tank, tubes and fermenters. J Biotechnol 70:313–321. https://doi.org/10.1126/science.131.3399.496 Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177. https://doi.org/10.1002/elsc.200900003 Torzillo G (1980) Sperimentazione sulla coltura massiva di Spirulina maxima in sistema tubolare nel biennio, in: Prospective Della Colt, Di Spirulina Ital, pp. 85–97 Richmond A (1987) The challenge confronting industrial microalgal culture: high photosyntentic efficiency in large-scale reactors. Hydrobiologia 151(152):117–121. https://doi.org/10.1007/978-94-009-4057-4_16 Idaho Sustainable Energy (2013) Hybrid Algae Production System (HAPS) to advance timetable for commercial production. https://energy.idaho.gov Pushparaj B, Pelosi E, Tredici MR, Pinzani E, Materassi R (1997) An integrated culture system for outdoor production of microalgae and cyanobacteria. J Appl Phycol 9:113–119. https://doi.org/10.1023/a:1007988924153 Acién-Fernandez FG, Sevilla JMF, Perez JAS, Grima EM, Chisti Y (2001) Airliftdriven external loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56:2721–2732. https://doi.org/10.1016/S0009-2509(00)00521-2 Molina-Grima E, Camacho FG, Perez JAS, Sevilla JMF, Fernandez FGA, Gomez AC (1994) A mathematical model of microalgal growth in light-limited chemostat culture. J Chem Technol Biotechnol 61(2):167–173. https://doi.org/10.1002/jctb.280610212 Narala RR, Garg S, Sharma KK, Thomas-Hall SR, Deme M, Li Y, Schenk PM (2016) Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Front Energy Res 4:29. https://doi.org/10.3389/fenrg.2016.00029 Xu L, Weathers PJ, Xiong XR, Liu CZ (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9:178–189. https://doi.org/10.1002/elsc.200800111 Huang Q, Jiang F, Wang L, Yang C (2017) Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 3:318–329. https://doi.org/10.1016/J.ENG.2017.03.020 Gressler PD; Rörig LR; Derner RB; Tramontin DP; Quadri MB (2021) Dispositivo de cultivo de organismos aquáticos para produção de biomassa e tratamento de efluentes. Brazilian Patent No. 1020160131022. Rio de Janeiro: INPI - Instituto Nacional da Propriedade Industrial Oliveira CYB, Nader C, Silva MF, Fracalossi DM, Gálvez AO, Lopes RG, Derner RB (2022) Integrated use of microalgal biomass of Choricystis minor var. minor: a promising model for production of biodiesel and aquafeeds. Biomass Conv Bioref 12:1265–1273. https://doi.org/10.1007/s13399-020-01091-4 Cheney EW, Kincaid DR (2012) Numerical mathematics and computing. Cengage Learning Vega BOA, Voltolina D (2007) Concentración, recuento celular y tasa de crecimiento. Métodos y herramientas analíticas en la evaluación de la biomasa microalgal 1:17–25 Martini FA, Rubert A, Souza MP, Kist LT, Hoeltz M, Benitez LB, Rizzetti TM, Gressler PD, Schneider RCS (2019) Periphytic biomass composition and exploitation from algae turf scrubber system. SN Appl Sci 1:765. https://doi.org/10.1007/s42452-019-0802-z Templeton DW, Laurens LML (2015) Nitrogen-to-protein conversion factors revisited for applications of microalgal biomass conversion to food, feed and fuel. Algal Res 11:359–367. https://doi.org/10.1016/j.algal.2015.07.013 Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099 Zapata M, Garrido JL, Jeffrey SW (2006) Chlorophyll c pigments: current status In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls advances in photosynthesis and respiration, Springer, Dordrecht. https://doi.org/10.1007/1-4020-4516-6_3 Morillas-España A, Lafarga T, Gómez-Serrano C, Acién-Fernández FG, González-López CV (2020) Year-long production of Scenedesmus almeriensis in pilot-scale raceway and thin-layer cascade photobioreactors. Algal Res 51:102069. https://doi.org/10.1016/j.algal.2020.102069 Ciardi M, Gómez-Serrano C, Lafarga T, González-Céspedes A, Acién G, López-Segura JG, Fernández-Sevilla JM (2022) Pilot-scale annual production of Scenedesmus almeriensis using diluted pig slurry as the nutrient source: reduction of water losses in thin-layer cascade reactors. J Clean Prod 359:132076. https://doi.org/10.1016/j.jclepro.2022.132076 Huang Y, Luo L, Xu K, Wang XC (2019) Characteristics of external carbon uptake by microalgae growth and associated effects on algal biomass composition. Bioresour Technol 292:121887. https://doi.org/10.1016/j.biortech.2019.121887 Choi HI, Hwang SW, Sim SJ (2019) Comprehensive approach to improving life-cycle CO2 reduction efficiency of microalgal biorefineries: a review. Biores Technol 291:121879. https://doi.org/10.1016/j.biortech.2019.121879 Grivalský T, Ranglová K, da Câmara Manoel JA, Lakatos GE, Lhotský R, Masojídek J (2019) Development of thin-layer cascades for microalgae cultivation: milestones. Folia Microbiol 64:603–614. https://doi.org/10.1007/s12223-019-00739-7 de Marchin T, Erpicum M, Franck F (2015) Photosynthesis of Scenedesmus obliquus in outdoor open thin-layer cascade system in high and low CO2 in Belgium. J Biotechnol 215:2–12. https://doi.org/10.1016/j.jbiotec.2015.06.429 Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826. https://doi.org/10.1007/s10811-006-9100-4 Masojídek J, Kopecký J, Giannelli L, Torzillo G (2010) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Ind Microbiol Biotechnol 38(2):307–317. https://doi.org/10.1007/s10295-010-0774-x Jerez CG (2015) Photosynthetic performance and biomass composition of Chlorella fusca (Chlorophyta) in thin‐layer cascades (Doctoral thesis, Universidad de Málaga) Venancio HC, Cella H, Lopes RG, Derner RB (2020) Surface-to-volume ratio influence on the growth of Scenedesmus obliquus in a thin-layer cascade system. J Appl Phycol 32:821–829. https://doi.org/10.1007/s10811-020-02036-0 Kumar A, Bera S (2020) Revisiting nitrogen utilization in algae: a review on the process of regulation and assimilation. Bioresour Technol Rep 12:100584. https://doi.org/10.1016/j.biteb.2020.100584 Basu S, Roy AS, Mohanty K, Ghoshal AK (2013) Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresour Technol 143:369–377. https://doi.org/10.1016/j.biortech.2013.06.010 Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131. https://doi.org/10.1016/j.tibtech.2007.12.002 Yang ZK, Niu YF, Ma YH, Xue J, Zhang MH, Yang WD, Liu JS, Lu SH, Guan Y, Li HY (2013) Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol Biofuel 6:1–14. https://doi.org/10.1186/1754-6834-6-67 Stephenson AL, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1(1):47–58. https://doi.org/10.4155/bfs.09.1 Oliveira CYB, D’Alessandro EB, Antoniosi Filho NR, Lopes RG, Derner RB (2021) Synergistic effect of growth conditions and organic carbon sources for improving biomass production and biodiesel quality by the microalga Choricystis minor var. minor. Sci Total Environ. 759:143476. https://doi.org/10.1016/j.scitotenv.2020.143476 Leong YK, Chang JS (2023) Lutein biosynthesis from microalgae—recent advances and circular economy. Environ Technol Innov 30:103097. https://doi.org/10.1016/j.eti.2023.103097