Biological and Chemical Reactivities of Plasma-Activated Water Prepared at Different Temperatures
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zhou R, Zhou R, Wang P, Xian Y, Mai-Prochnow A, Lu X, Cullen PJ, Ostrikov KK, Bazaka K (2020) Plasma-activated water: generation, origin of reactive species and biological applications. J Phys D Appl Phys 53:303001. https://doi.org/10.1088/1361-6463/ab81cf
Moldgy A, Nayak G, Aboubakr HA, Goyal SM, Bruggeman PJ (2020) Inactivation of virus and bacteria using cold atmospheric pressure air plasmas and the role of reactive nitrogen species. J Phys D Appl Phys 53:434004. https://doi.org/10.1088/1361-6463/aba066
Utsumi F, Kajiyama H, Nakamura K, Tanaka H, Mizuno M, Ishikawa K, Kondo H, Kano H, Hori M, Kikkawa F (2013) Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS One. 8:e81576. https://doi.org/10.1371/journal.pone.0081576
Ma R, Wang G, Tian Y, Wang K, Zhang J, Fang J (2015) Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J Hazard Mater 300:643–651. https://doi.org/10.1016/j.jhazmat.2015.07.061
Zhou R, Zhou R, Zhang X, Zhuang J, Yang S, Bazaka K, Ostrikov K (2016) Effects of atmospheric-pressure N2, He, air, and O2 microplasmas on mung bean seed germination and seedling growth. Sci Rep-Uk. https://doi.org/10.1038/srep32603
Guo L, Yao Z, Yang L, Zhang H, Qi Y, Gou L, Xi W, Liu D, Zhang L, Cheng Y, Wang X, Rong M, Chen H, Kong MG (2021) Plasma-activated water: an alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection. Chem Eng J. 421:127742. https://doi.org/10.1016/j.cej.2020.127742
Wang S, Xu D, Qi M, Li B, Peng S, Li Q, Zhang H, Liu D (2021) Plasma-activated water promotes wound healing by regulating inflammatory responses. Biophysica 1:297–310. https://doi.org/10.3390/biophysica1030022
Lamichhane P, Veerana M, Lim JS, Mumtaz S, Shrestha B, Kaushik NK, Park G, Choi EH (2021) Low-temperature plasma-assisted nitrogen fixation for corn plant growth and development. Int J Mol Sci 22:5360. https://doi.org/10.3390/ijms22105360
Goldstein S, Lind J, Merényi G (2005) Chemistry of peroxynitrites as compared to peroxynitrates. Chem Rev 105:2457–2470. https://doi.org/10.1021/cr0307087
Tsoukou E, Bourke P, Boehm D (2020) Temperature stability and effectiveness of plasma-activated liquids over an 18 months period. Water-Sui 12:3021. https://doi.org/10.3390/w12113021
Arda G, Hsu C (2023) Preservation of reactive species in frozen plasma-activated water and enhancement of its bactericidal activity through pH adjustment. Plasma Chem Plasma Process 43:599–618. https://doi.org/10.1088/1361-6463/ac286a
Chen J, Wang Z, Sun J, Zhou R, Guo L, Zhang H, Liu D, Rong M, Ostrikov KK (2023) Plasma-activated hydrogels for microbial disinfection. Adv Sci. https://doi.org/10.1002/advs.202207407
Shen J, Tian Y, Li Y, Ma R, Zhang Q, Zhang J, Fang J (2016) Bactericidal Effects against S. aureus and Physicochemical Properties of Plasma Activated Water stored at different temperatures. Sci Rep 6:28505. https://doi.org/10.1038/srep28505
Subramanian P, Jain A, Shivapuji A, Sundaresan N, Dasappa S, Rao L (2020) Plasma-activated water from a dielectric barrier discharge plasma source for the selective treatment of cancer cells. Plasma Process Polym 17:1900260
Rathore V, Nema S (2021) Optimization of process parameters to generate plasma activated water and study of physicochemical properties of plasma activated solutions at optimum condition. J Appl Phys 129:084901. https://doi.org/10.1063/5.0033848
Pang B, Liu Z, Zhang H, Wang S, Gao Y, Xu D, Liu D, Kong M (2022) Investigation of the chemical characteristics and anticancer effect of plasma-activated water: The effect of liquid temperature. Plasma Process Polym 19:2100079. https://doi.org/10.1002/ppap.202100079
Choi EJ, Park HW, Kim SB, Ryu S, Lim J, Hong EJ, Byeon YS, Chun HH (2019) Sequential application of plasma-activated water and mild heating improves microbiological quality of ready-to-use shredded salted kimchi cabbage (Brassica pekinensis L.). Food Control 98:501–509. https://doi.org/10.1016/j.foodcont.2018.12.007
Xiang Q, Zhang R, Fan L, Ma Y, Wu D, Li K, Bai Y (2020) Microbial inactivation and quality of grapes treated by plasma-activated water combined with mild heat. LWT. 126:109336. https://doi.org/10.1016/j.lwt.2020.109336
Zhang R, Ma Y, Wu DI, Fan L, Bai Y, Xiang Q (2020) Synergistic inactivation mechanism of combined plasma-activated water and mild heat against saccharomyces cerevisiae. J Food Protect 83:1307–1314. https://doi.org/10.4315/JFP-20-065
Tian Y, Ma R, Zhang Q, Feng H, Liang Y, Zhang J, Fang J (2015) Assessment of the physicochemical properties and biological effects of water activated by non-thermal plasma above and beneath the water surface. Plasma Process Polym 12:439–449. https://doi.org/10.1002/ppap.201400082
Wang B, Wang W, Xiang Q, Bai Y (2023) Effects of heating on the antibacterial efficacy and physicochemical properties of plasma-activated water. Qual Assur Saf Crop Foods 15:100–108
Okyere A, Boakye P, Bertoft E, Annor G (2022) Temperature of plasma-activated water and its effect on the thermal and chemical surface properties of cereal and tuber starches. Curr Res Food Sci 5:1668–1675. https://doi.org/10.1016/j.crfs.2022.09.020
Man C, Zhang C, Fang H, Zhou R, Huang B, Xu Y, Zhang X, Shao T (2022) Nanosecond-pulsed microbubble plasma reactor for plasma-activated water generation and bacterial inactivation. Plasma Process Polym. 19:e2200004. https://doi.org/10.1002/ppap.202200004
Rothwell J, Alam D, Carter D, Soltani B, Mcconchie R, Zhou R, Cullen P, Mai-Prochnow A (2022) The antimicrobial efficacy of plasma-activated water against Listeria and E. coli is modulated by reactor design and water composition. J Appl Microbiol 132:2490–2500. https://doi.org/10.1111/jam.15429
Wang Q, Salvi D (2021) Evaluation of plasma-activated water (PAW) as a novel disinfectant: Effectiveness on Escherichia coli and Listeria innocua, physicochemical properties, and storage stability. LWT 149:111847. https://doi.org/10.1016/j.lwt.2021.111847
Falkenstein Z, Coogan JJ (1997) Microdischarge behaviour in the silent discharge of nitrogen - oxygen and water - air mixtures. J Phys D Appl Phys 30:817–825. https://doi.org/10.1088/0022-3727/30/5/015
Qi Z, Tian E, Song Y, Sosnin EA, Skakun VS, Li T, Xia Y, Zhao Y, Lin X, Liu D (2018) Inactivation of Shewanella putrefaciens by plasma activated water. Plasma Chem Plasma 38:1035–1050. https://doi.org/10.1007/s11090-018-9911-5
Chasanah U, Yulianto E, Zain AZ, Sasmita E, Restiwijaya M, Kinandana AW, Arianto F, Nur M (2019) Evaluation of titration method on determination of ozone concentration produced by dielectric barrier discharge plasma (DBDP) Technology. J Phys: Conf Ser 1153:12086. https://doi.org/10.1088/1742-6596/1153/1/012086
Marotta E, Ceriani E, Schiorlin M, Ceretta C, Paradisi C (2012) Comparison of the rates of phenol advanced oxidation in deionized and tap water within a dielectric barrier discharge reactor. Water Res 46:6239–6246. https://doi.org/10.1016/j.watres.2012.08.022
Kanazawa S, Furuki T, Nakaji T, Akamine S, Ichiki R (2013) Application of chemical dosimetry to hydroxyl radical measurement during underwater discharge. J Phys Conf Ser 418:12102–12107. https://doi.org/10.1088/1742-6596/418/1/012102
Liu X, Wang Z, Li J, Wang Y, Sun Y, Dou D, Liang X, Wu J, Wang L, Xu Y, Liu D (2022) Inactivation of E. coli, S. aureus, and Bacteriophages in biofilms by humidified air plasma. Int J Mol Sci. 23:4856. https://doi.org/10.3390/ijms23094856
Xi W, Wang W, Liu Z, Wang Z, Guo L, Wang X, Rong M, Liu D (2020) Mode transition of air surface micro-discharge and its effect on the water activation and antibacterial activity. Plasma Sources Sci T 29:95013. https://doi.org/10.1088/1361-6595/aba7ef
Zhou S, Su L, Shi T, Zheng T, Tong Y, Nie W, Che X, Zhao J (2019) Experimental study on the diffusive flame stabilization mechanism of plasma injector driven by AC dielectric barrier discharge. J Phys D Appl Phys 52:265202. https://doi.org/10.1088/1361-6463/ab15cd]
Shen J, Tian Y, Li Y, Ma R, Zhang Q, Zhang J, Fang J (2016) Bactericidal Effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci Rep. https://doi.org/10.1038/srep28505
Machala Z, Tarabova B, Hensel K, Spetlikova E, Sikurova L, Lukes P (2013) Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects. Plasma Process Polym 10:649–659. https://doi.org/10.1002/ppap.201200113
NDRL/NIST Solution Kinetics Database US. http://kinetics.nist.gov/solution/. Accessed 03 March 2022
Cataldo F (2006) Ozone degradation of biological macromolecules: Proteins, haemoglobin, RNA, and DNA. Ozone Sci Eng. 28:317–328. https://doi.org/10.1080/01919510600900290
Lukes P, Dolezalova E, Sisrova I, Clupek M (2014) Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci. https://doi.org/10.1088/0963-0252/23/1/015019
Görgényi M, Dewulf J, Langenhove HV (2002) Temperature dependence of Henry’s law constant in an extended temperature range. Chemosphere (Oxford) 48:757–762. https://doi.org/10.1016/S0045-6535(02)00131-5
Nirmalakhandan N, Brennan RA, Speece RE (1997) Predicting Henry’s Law constant and the effect of temperature on Henry’s Law constant. Water Res 31:1471–1481. https://doi.org/10.1016/S0043-1354(96)00395-8
Dewulf J, Drijvers D, Langenhove HV (1995) Measurement of Henry’s law constant as function of temperature and salinity for the low temperature range. Armos Environ 29:323–331. https://doi.org/10.1016/1352-2310(94)00256-K
Levanov AV, Isaikina OY, Lunin VV (2019) Thermodynamic and kinetic parameters of the solubility of ozone in water. Russ J Phys Chem A. 93:1230–1234. https://doi.org/10.1134/S0036024419070148
Wright A, Bubb WA, Hawkins CL, Davies MJ (2002) Singlet oxygen-mediated protein oxidation: evidence for the formation of reactive side chain peroxides on tyrosine residues. Photochem Photobiol 76:35–46. https://doi.org/10.1562/0031-8655(2002)076%3c0035:sompoe%3e2.0.co;2
Spanggord RJ, Yao CD, Mill T (2000) Oxidation of Aminodinitrotoluenes with ozone: Products and pathways. Environ Sci Technol 34:497–504. https://doi.org/10.1021/es990190h
Radil R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls: the cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266:4244–4250. https://doi.org/10.1016/S0021-9258(20)64313-7
Uppu RM, Pryor WA (1994) The reactions of ozone with proteins and unsaturated fatty acids in reverse micelles. Chem Res Toxicol 7:47–55. https://doi.org/10.1021/tx00037a007
Allwood MC, Russell AD (1970) Mechanisms of thermal injury in nonsporulating bacteria. Adv Appl Microbiol 12:89–119. https://doi.org/10.1016/S0065-2164(08)70583-5
Chick H (1910) The process of disinfection by chemical agencies and hot water. J Hyg 10:238–286. https://doi.org/10.1017/S0022172400042959
Cousin D (1967) Thermosensitive mutants of Escherichia coli k12.2. studies on a lethal mutation controlling an energy yielding reaction. Ann Inst Pasteur 113:309–325
Russell AD, Harries D (1967) Some aspects of thermal injury in Escherichia coli. Appl Microbiol 15:407–410. https://doi.org/10.1128/am.15.2.407-410.1967
Califano L (1952) Libération d’acide nucléique par les cellules bactériennes sous l’action de la chaleur. Bull World Health Organ 6:19–34
Mani-López E, García HS, López-Malo A (2012) Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res Int 45:713–721. https://doi.org/10.1016/j.foodres.2011.04.043
De Oliveira EF, Cossu A, Tikekar RV, Nitin N (2017) Enhanced antimicrobial activity based on a synergistic combination of sublethal levels of stresses induced by UVa light and organic acids. Appl Environ Microbiol 83:e00383-e417. https://doi.org/10.1128/AEM.00383-17
Hao J, Lei Y, Gan Z, Zhao W, Shi J, Jia C, Sun A (2021) Synergetic inactivation mechanism of protocatechuic acid and high hydrostatic pressure against escherichia coli O157:H7. Foods 10:3053. https://doi.org/10.3390/foods10123053
Jeong Y, Ha J (2019) Combined treatment of UV-A radiation and acetic acid to control foodborne pathogens on spinach and characterization of their synergistic bactericidal mechanisms. Food Control. 106:106698. https://doi.org/10.1016/j.foodcont.2019.06.024