Bioinformatic identification of Mycobacterium tuberculosis proteins likely to target host cell mitochondria: virulence factors?

Springer Science and Business Media LLC - Tập 2 - Trang 1-10 - 2012
María Maximina Bertha Moreno-Altamirano1, Iris Selene Paredes-González1, Clara Espitia2, Mauricio Santiago-Maldonado1, Rogelio Hernández-Pando3, Francisco Javier Sánchez-García1
1Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México
2Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
3Instituto Nacional de Ciencias Médicas y de la Salud “Salvador Zubirán”, México

Tóm tắt

M. tuberculosis infection either induces or inhibits host cell death, depending on the bacterial strain and the cell microenvironment. There is evidence suggesting a role for mitochondria in these processes. On the other hand, it has been shown that several bacterial proteins are able to target mitochondria, playing a critical role in bacterial pathogenesis and modulation of cell death. However, mycobacteria–derived proteins able to target host cell mitochondria are less studied. A bioinformaic analysis based on available genomic sequences of the common laboratory virulent reference strain Mycobacterium tuberculosis H37Rv, the avirulent strain H37Ra, the clinical isolate CDC1551, and M. bovis BCG Pasteur strain 1173P2, as well as of suitable bioinformatic tools (MitoProt II, PSORT II, and SignalP) for the in silico search for proteins likely to be secreted by mycobacteria that could target host cell mitochondria, showed that at least 19 M. tuberculosis proteins could possibly target host cell mitochondria. We experimentally tested this bioinformatic prediction on four M. tuberculosis recombinant proteins chosen from this list of 19 proteins (p27, PE_PGRS1, PE_PGRS33, and MT_1866). Confocal microscopy analyses showed that p27, and PE_PGRS33 proteins colocalize with mitochondria. Based on the bioinformatic analysis of whole M. tuberculosis genome sequences, we propose that at least 19 out of 4,246 M. tuberculosis predicted proteins would be able to target host cell mitochondria and, in turn, control mitochondrial physiology. Interestingly, such a list of 19 proteins includes five members of a mycobacteria specific family of proteins (PE/PE_PGRS) thought to be virulence factors, and p27, a well known virulence factor. P27, and PE_PGRS33 proteins experimentally showed to target mitochondria in J774 cells. Our results suggest a link between mitochondrial targeting of M. tuberculosis proteins and virulence.

Tài liệu tham khảo

WHO: report 2010, http://www.who.int/tb/publications/global_report/2010, Kenny B, Jepson M: Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell Microbiol. 2000, 2: 579-590. 10.1046/j.1462-5822.2000.00082.x. Nougayrede J-P, Donnenberg MS: Enterophatogenic Escherichia coli EspF is targeted to mitochondria and is required to initiate the mitochondrial death pathway. Cell Microbiol. 2004, 6: 1097-1111. 10.1111/j.1462-5822.2004.00421.x. Kozjak-Pavlovic V, Ross K, Rudel T: Import of bacterial pathogenicity factors into mitochondria. Curr Op Microbiol. 2008, 11: 9-14. 10.1016/j.mib.2007.12.004. Papatheodorou P, Domanska G, Oxle M, Mathieu J, Selchow O, Kenny B, Rassow J: The enterophatogenic Escherichia coli (EPEC) Map effector is imported into the mitochondrial matrix by the TOM/Hsp70 system and alters organelle morphology. Cell Microbiol. 2006, 8: 677-689. 10.1111/j.1462-5822.2005.00660.x. Duan L, Gan H, Golan DE, Remold HG: Critical role of mitochondrial damage in determining outcome of macrophage infection with Mycobacterium tuberculosis. J Immunol. 2002, 169: 5181-5187. Abarca-Rojano E, Rosas-Medina P, Zamudio-Cortéz P, Mondragón-Flores R, Sánchez-García FJ: Mycobacterium tuberculosis virulence correlates with mitochondrial cytochrome c release in infected macrophages. Scand J Immunol. 2003, 58: 419-427. 10.1046/j.1365-3083.2003.01318.x. Chen M, Gan H, Remold HG: A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J Immunol. 2006, 176: 3707-3716. Cadieux N, Parra M, Cohen H, Maric D, Morris SL, Brennan MJ: Induction of cell death after localization of the host cell mitocondria by the Mycobacterium tuberculosis PE_PGRS33 protein. Microbiol. 2011, 157: 793-804. 10.1099/mic.0.041996-0. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998, 393: 537-544. 10.1038/31159. Fleischmann RD, Alland D, Eisen JA, et al: Whole–genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol. 2002, 184: 5479-5490. 10.1128/JB.184.19.5479-5490.2002. Kapopoulou A, Lew JM, Cole ST: The Mycobrowser portal: a comprehensive and manually annotated resource for Mycobacterial genomes. Tubercul. 2010, 91: 8-13. Cole ST: Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett. 1999, 452: 7-10. 10.1016/S0014-5793(99)00536-0. Banu S, Honore N, Saint-Joanis B, Philpott D, Prevost M-C, Cole ST: Are the PE_PGRS proteins of Mycobacterium tuberculosis variable surface antigens?. Mol Microbiol. 2002, 44: 9-19. 10.1046/j.1365-2958.2002.02813.x. Zheng H, Lu L, Wang B, Pu S, Zhang X, Zhu G, Shi W, Zhang L, Wang H, Wang S, Zhao G, Zhang Y: Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS One. 2008, 3: e2375-10.1371/journal.pone.0002375. Lucattini R, Likic VA, Lithgow T: Bacterial proteins predisposed for targeting to mitochondria. Mol Biol Evol. 2004, 21: 652-658. 10.1093/molbev/msh058. Rohde K, Yates RM, Purdy GE, Russell DG: Mycobacterium tuberculosis and the environment within the phagosome. Immunol Rev. 2007, 219: 37-54. 10.1111/j.1600-065X.2007.00547.x. Armstrong JA, Hart PD: Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med. 1971, 134: 713-740. 10.1084/jem.134.3.713. Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C, Huygen K, Kebl B, Thompson C, Bacher G, Pieters J: Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science. 2004, 304: 1800-1804. 10.1126/science.1099384. Axelrod S, Oschkinat H, Enders J, Schlegel B, Brinkmann V, Kaufmann SH, Hass A, Schaible UE: Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cell Microbiol. 2008, 10: 1530-1545. 10.1111/j.1462-5822.2008.01147.x. Ragno S, Romano M, Howell S, Pappin DJ, Jenner PJ, Colston MJ: Changes in gene expression in macrophages infected with Mycobacterium tuberculosis: a combined transcriptomic and proteomic approach. Immunol. 2001, 104: 99-108. 10.1046/j.1365-2567.2001.01274.x. Tailleux L, Waddell SJ, Pelizzola M, Mortellaro A, Withers M, Tanne A, Castagnoli PR, Gicquel B, Stoker NG, Butcher PD, Foti M, Neyrolles O: Probing host pathogen cross–talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages. PLoS One. 2008, 3: e1403-10.1371/journal.pone.0001403. Danelishvili L, McGarvey J, Li YJ, Bermudez LE: Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. Cell Microbiol. 2003, 5: 649-660. 10.1046/j.1462-5822.2003.00312.x. Kelly DM, ten Bokum AMC, O’Leary SM, O’Sullivan MP, Keane J: Bystander macrophage apoptosis after Mycobacterium tuberculosis H37Ra infection. Infect Immun. 2008, 76: 351-360. 10.1128/IAI.00614-07. Keane J, Remold HG, Kornfeld H: Virulent Mycobacterium tuberculosis strain evades apoptosis of infected alveolar macrophages. J Immunol. 2000, 164: 2016-2020. Sly LM, Hingley-Wilson SM, Reiner NE, McMaster WR: Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl–2 family member Mcl–1. J Immunol. 2003, 170: 430-437. Derrick SC, Morris SL: The ESAT6 protein of Mycobacterium tuberculosis induces apoptosis of macrophages by activating caspase expression. Cell Microbiol. 2007, 9: 1547-1555. 10.1111/j.1462-5822.2007.00892.x. Velmurugan K, Chen B, Miller JL, Azogue S, Gurses S, Hsu T, Glickman M, Jacobs WR, Porcelli SA, Briken V: Mycobacterium tuberculosis nuoG is a virulent gene that inhibits apoptosis of infected host cells. PLoS Pathog. 2007, 3: e110-10.1371/journal.ppat.0030110. Sanchez A, Espinosa P, Esparza MA, Colon M, Bernal G, Mancilla R: Mycobacterium tuberculosis 38–KDa lipoprotein is apoptogenic for human monocyte–derived macrophages. Scand J Immunol. 2009, 69: 20-28. 10.1111/j.1365-3083.2008.02193.x. Green DR, Kroemer G: The pathophysiology of mitochondrial cell death. Science. 2004, 305: 626-629. 10.1126/science.1099320. Boya P, Roques B, Kroemer G: New EMBO members′review: viral and bacterial proteins regulating apoptosis at the mitochondrial level. EMBO J. 2001, 20: 4325-4331. 10.1093/emboj/20.16.4325. Arnoult D, Carneiro L, Tattoli I, Girardin SE: The role of mitochondria in cellular defense against microbial infection. Semin Immunol. 2009, 21: 223-232. 10.1016/j.smim.2009.05.009. Gomez M, Johnson S, Gennaro ML: Identification of secreted proteins of Mycobacterium tuberculosis by a bioinformatic approach. Infect Immun. 2000, 68: 2323-2327. 10.1128/IAI.68.4.2323-2327.2000. Claros MG, Vincens P: Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996, 241: 779-786. 10.1111/j.1432-1033.1996.00779.x. Horton P, Nakai K: Better prediction of protein cellular localization sites with the k nearest neighbours classifier. Intell Syst Mol Biol. 1997, 5: 147-152. Leversen NA, de Souza GA, Malen H, Prasad S, Jonassen I, Wiker H: Evaluation of signal peptide prediction algorithms for identification of mycobacterial signal peptides using sequence data from proteomic methods. Microbiol. 2009, 155: 2375-2383. 10.1099/mic.0.025270-0. Abdallah AM, Verboom T, Weerdenburg EM, van Pittius NC G, Mahasha PW, Jiménez C, Parra M, Cadieux N, Brennan MJ, Appelmelk BJ, Bitter W: PPE and PE–PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX–5. Mol Mcrobiol. 2009, 73: 329-340. 10.1111/j.1365-2958.2009.06783.x. Mészáros B, Tóth J, Vértessy BG, Dosztányi Z, Simon I: Proteins with complex architecture as potential targets for drug design: a case study of Mycobacterium tuberculosis. PLoS Comp Biol. 2011, 7: e1002118-10.1371/journal.pcbi.1002118. Espitia C, Laclette JP, Mondragon-Palomino M, Amador A, Campusano J, Martens A, Singh M, Cicero R, Zhang Y, Moreno C: The PE_PGRS glycine–rich proteins of Mycobacterium tuberculosis: a new family of fibronectin–binding proteins?. Microbiol. 1999, 145: 3487-3495. Brennan MJ, Delogu G, Chen Y, Bardarov S, Kriakov J, Alavi M, Jacobs WR: Evidence that Mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells. Infect Immun. 2001, 69: 7326-7333. 10.1128/IAI.69.12.7326-7333.2001. Blaji KN, Goyal G, Narayana Y, Srinivas M, Chaturvedi R, Mohammad S: Apoptosis triggered by Rv1818c, a PE family gene from mycobacterium tuberculosis is regulated by mitochondrial intermediates in T cells. Microb Infect. 2007, 9: 271-281. 10.1016/j.micinf.2006.11.013. Nielsen H, Engelbrecht J, Brunak S, von Heijne G: Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Prot Engin. 1997, 10: 1-6. 10.1093/protein/10.1.1. Bendtsen JD, Nielsen H, Von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 204, 340: 783-795. Emanuelsson O, Brunak S, von Heijne G, Nielsen H: Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protocol. 2007, 2: 953-971. 10.1038/nprot.2007.131. Gonzalez-Zamorano M, Mendoza-Hernandez G, Xolapa W, Parada C, Vallecillo AJ, Bigi F, Espitia C: Mycobacterium tuberculosis glycoproteomics based on ConA–lectin affinity capture of mannosylated proteins. J Prot Res. 2009, 8: 721-733. 10.1021/pr800756a.