Bioenergy application of Dunaliella salina SA 134 grown at various salinity levels for lipid production

Scientific Reports - Tập 7 Số 1
Rajper Aftab Ahmed1, Meilin He1, Rajper Asma Aftab1, Shiyan Zheng1, Mostafa Nagi1, Ramadan Bakri1, Changhai Wang1
1Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

Tóm tắt

Abstract

The biofuels are receiving considerable attention as a substitute for petro diesel. For microalgae, the cell density or biomass and lipid contents are key components for biodiesel production. This study was conducted to develop favorable culture conditions for Dunaliella salina to maximize its biomass and lipid accumulation. The effect of salinity (0.5 to 2.5 M NaCl) on the cell population, biochemical composition, and lipid output of Dunaliella salina was examined under a controlled environment for 21 days. Maximum growth (6.57 × 107 to 7.17 × 107cells mL−1) potentials were observed at 1.5 to 2 M NaCl. The photosynthetic pigments and carbohydrates also showed trends similar to growth. The maximum carotenoid level (5.16 mg L−1) was recorded at 2 M NaCl. Almost all physicochemical parameters increased with increases in salinity, biomass (1231.66 ± 1.26 mg L−1) and lipid content (248.33 mg L−1), as recorded at 2 M NaCl. Based on fluorescence intensity, the highest values (11.84 × 107cells/ml) of neutral lipids and total lipids (22.28%) were recorded at optimum salinity levels. The present study suggests that a high biomass and lipid accumulation of Dunaliella salina SA 134 could be obtained at the 2 M NaCl level.

Từ khóa


Tài liệu tham khảo

Agency, I. E. World Energy Outlook 2007: China and India Insights Complete Edition - ISBN 9264027300. Sourceoecd Energy 674(674) (2007).

Patil, V. & Tran, K. Q. Towards sustainable production of biofuels from microalgae. International Journal of Molecular Sciences 9, 1188 (2008).

Demirbas, A. Social, economic, environmental and policy aspects of biofuels. 2, 75–109 (2010).

Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J. & Chang, J. S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technology 102, 71–81 (2011).

Thakur, V. Biodiesel - An Alternative Method for Energy Crisis: A Review. Journal of Biological and Chemical Chronicles 2, 14–26 (2016).

Yang, C., Jia, L., Chen, C., Liu, G. & Fang, W. Bio-oil from hydro-liquefaction of Dunaliella salina over Ni/REHY catalyst. Bioresource technology 102, 4580–4584 (2011).

SRREN, I. Renewable Energy Sources and Climate Change Mitigation. Special report of (2011).

Chisti, Y. Biodiesel from microalgae beats bioethanol. Trends in biotechnology 26, 126–131 (2008).

Bioenergy, I.E.A. Algae the future for bioenergy (2009).

Janssen, M. G. J. Cultivation of microalgae: effect of light/dark cycles on biomass yield. (sn] 2002).

Walker, T. L., Purton, S., Becker, D. K. & Collet, C. Microalgae as bioreactors. Plant cell reports 24, 629–641 (2005).

Chisti, Y. Biodiesel from microalgae. Biotechnology advances 25, 294–306 (2007).

Mata, T. M., Martins, A. A. & Caetano, N. S. Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews 14, 217–232 (2010).

Ndimba, B. K. et al. Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae. Journal of proteomics 93, 234–244 (2013).

Guan, W. et al. Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography–mass spectrometry. Journal of Chromatography A 1218, 8289–8293 (2011).

Tsai, D. D.-W., Ramaraj, R. & Chen, P. H. Growth condition study of algae function in ecosystem for CO2 bio-fixation. Journal of Photochemistry and Photobiology B: Biology 107, 27–34 (2012).

Kumar, K., Dasgupta, C. N., Nayak, B., Lindblad, P. & Das, D. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource technology 102, 4945–4953 (2011).

Al-Qasmi, M., Raut, N., Talebi, S., Al-Rajhi, S. & Al-Barwani, T. In Proceedings of the world congress on engineering. 4–6 (2012)

Ben-Amotz, A. Industrial production of microalgal cell-mass and secondary products-major industrial species. Handbook of microalgal culture: Biotechnology and applied phycology 273 (2004).

Um, B.-H. & Kim, Y.-S. Review: A chance for Korea to advance algal-biodiesel technology. Journal of Industrial and Engineering Chemistry 15, 1–7 (2009).

Li, Y., Horsman, M., Wang, B., Wu, N. & Lan, C. Q. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied microbiology and biotechnology 81, 629–636 (2008).

Sialve, B., Bernet, N. & Bernard, O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology advances 27, 409–416 (2009).

Wiley, P. S. Photosynthetic and oxidative stress in the green alga Dunaliella tertiolecta: The effects of UV-B and UV-A radiation, University of new hampshire (2009).

Fisher, M., Pick, U. & Zamir, A. A Salt-Induced 60-Kilodalton Plasma Membrane Protein Plays a Potential Role in the Extreme Halotolerance of the Alga Dunaliella. Plant Physiology 106, 1359–1365 (1994).

Borowitzka, L. J. & Brown, A. D. The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. The role of glycerol as a compatible solute. Archives of Microbiology 96, 37–52 (1974).

Raja, R., Hemaiswarya, S. & Rengasamy, R. Exploitation of Dunaliella for beta-carotene production. Applied Microbiology & Biotechnology 74, 517–523 (2007).

Ben-Amotz, A. & Avron, M. Dunaliella: physiology, biochemistry, and biotechnology (CRC press, 1992).

Ben-Amotz, A. & Avron, M. On the Factors Which Determine Massive beta-Carotene Accumulation in the Halotolerant Alga Dunaliella bardawil. Plant Physiology 72, 593–597 (1983).

Alhasan, R. H., Ghannoum, M. A., Sallal, A. K. J., Abuelteen, K. H. & Radwan, S. S. Correlative Changes of Growth, Pigmentation and Lipid Composition of Dunaliella salina in Response to Halostress. Microbiology 133, 2607–2616 (1987).

Wiley, P. S. Photosynthetic and oxidative stress in the green alga Dunaliella tertiolecta: The effects of UV-B and UV-A radiation. Dissertations & Theses - Gradworks (2009).

Lawson, K. A. et al. Response: Re: Multivitamin Use and Risk of Prostate Cancer in the National Institutes of Health—AARP Diet and Health Study. Journal of the National Cancer Institute 99, 1492–1493 (2007).

Mendoza, T. C. Are biofuels really beneficial for humanity. Philippine Journal of Crop Science 32, 85–100 (2007).

Heidari, R., Riahi, H. & Saadatmand, S. Effects of salt and irradiance stress on photosynthetic pigments and proteins in Dunaliella salina teodoresco. Journal of sciences islamic republic of IRAN 11, 73–78 (2000).

Tomaselli, L. et al. In Twelfth international seaweed symposium. Springer, 79–82 (1987).

Bremauntz, P., Fernández-Linares, L. C. & Cañizares-Villanueva, R. O. Osmotic Stress Effect over Carbohydrate Production in a Native Starin of Scenedesmus sp. Natural Resources 5, 5 (2014).

Kirrolia, A., Bishnoi, N. & Singh, N. Salinity as a factor affecting the physiological and biochemical traits of Scenedesmus quadricauda. Journal of Algal Biomass Utilization 2, 28–34 (2011).

Hiremath, S. & Mathad, P. Impact of salinity on the physiological and biochemical traits of Chlorella vulgaris Beijerinck. J Algal Biomass Utln 1, 51–59 (2010).

Yao, S., Brandt, A., Egsgaard, H. & Gjermansen, C. Neutral lipid accumulation at elevated temperature in conditional mutants of two microalgae species. Plant physiology and biochemistry 61, 71–79 (2012).

Georgianna, D. R. & Mayfield, S. P. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488, 329–335 (2012).

Salama, E.-S. et al. Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess and biosystems engineering 36, 827–833 (2013).

Farhat, N. et al. Optimization of salt concentrations for a higher carotenoid production in dunaliella salina (chlorophyceae) 1. Journal of phycology 47, 1072–1077 (2011).

Muñoz, J., Mudge, S. M. & Sandoval, A. Effects of ionic strength on the production of short chain volatile hydrocarbons by Dunaliella salina (Teodoresco). Chemosphere 54, 1267 (2004).

Nikookar, K., Moradshahi, A. & Kharati, M. Influence of salinity on the growth, pigmentation and ascorbate peroxidase activity of dunaliella salina isolated from maharlu salt lake in shiraz. Iranian Journal Of science & Technology 28, 117–125 (2004).

Takagi, M. & Yoshida, T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of bioscience and bioengineering 101, 223–226 (2006).

Fazeli, M. R., Tofighi, H., Samadi, N. & Jamalifar, H. Carotenoids accumulation by dunaliella tertiolecta (lake urmia isolate) and dunaliella salina (ccap 19/18 & wt) under stress conditions. Daru Journal of Pharmaceutical Sciences 14 (2012).

García, F., Freile-Pelegrín, Y. & Robledo, D. Physiological characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan, Mexico. Bioresource Technology 98, 1359 (2007).

Johnson, M. K., Johnson, E. J., Macelroy, R. D., Speer, H. L. & Bruff, B. S. Effects of Salts on the Halophilic Alga Dunaliella viridis. Journal of Bacteriology 95, 1461–1468 (1968).

Jahnke, L. S. & White, A. L. Long-term hyposaline and hypersaline stresses produce distinct antioxidant responses in the marine alga Dunaliella tertiolecta. Journal of Plant Physiology 160, 1193–1202 (2003).

Ye, Z. W., Jiang, J. G. & Wu, G. H. Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotechnology advances 26, 352–360 (2008).

Warr, S., Reed, R., Chudek, J., Foster, R. & Stewart, W. Osmotic adjustment in Spirulina platensis. Planta 163, 424–429 (1985).

Yao, S. et al. Neutral lipid production in Dunaliella salina. Journal of Applied Phycology 28, 2167–2175 (2016).

Lu, C. & Hills, M. J. Arabidopsis mutants deficient in diacylglycerol acyltransferase display increased sensitivity to abscisic acid, sugars, and osmotic stress during germination and seedling development. Plant Physiology 129, 1352–1358 (2002).

Du, Z. Y. & Benning, C. Lipids in Plant and Algae Development. 179–205 (Springer, 2016).

Hounslow, E., Vijay Kapoore, R., Vaidyanathan, S., James Gilmour, D. & C Wright, P. The search for a lipid trigger: The effect of salt stress on the lipid profile of the model microalgal species Chlamydomonas reinhardtii for biofuels production. Current Biotechnology 5, 305–313 (2016).

Davidi, L., Shimoni, E., Khozin-Goldberg, I., Zamir, A. & Pick, U. Origin of β-carotene-rich plastoglobuli in Dunaliella bardawil. Plant physiology 164, 2139–2156 (2014).

Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P. & Del Borghi, M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification 48, 1146–1151 (2009).

Oren, A. Glycerol metabolism in hypersaline environments. Environmental microbiology (2016).

Wellburn, A. & Lichtenthaler, H. Advances in photosynthesis research. 9–12 (Springer, 1984).

Liu, Z. Y., Wang, G. C. & Zhou, B. C. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource technology 99, 4717–4722 (2008).