Bioelectrical impedance analysis-guided fluid management promotes primary fascial closure after open abdomen: a randomized controlled trial

Springer Science and Business Media LLC - Tập 8 - Trang 1-12 - 2021
Kai Wang1, Shi-Long Sun1, Xin-Yu Wang1, Cheng-Nan Chu1, Ze-Hua Duan1, Chao Yang1, Bao-Chen Liu1, Wei-Wei Ding1,2, Wei-Qin Li1, Jie-Shou Li1
1Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
2Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, The First School of Clinical Medicine, Southern Medical University, Nanjing, China

Tóm tắt

Fluid overload (FO) after resuscitation is frequent and contributes to adverse outcomes among postinjury open abdomen (OA) patients. Bioelectrical impedance analysis (BIA) is a promising tool for monitoring fluid status and FO. Therefore, we sought to investigate the efficacy of BIA-directed fluid resuscitation among OA patients. A pragmatic, prospective, randomized, observer-blind, single-center trial was performed for all trauma patients requiring OA between January 2013 and December 2017 to a national referral center. A total of 140 postinjury OA patients were randomly assigned in a 1:1 ratio to receive either a BIA-directed fluid resuscitation (BIA) protocol that included fluid administration with monitoring of hemodynamic parameters and different degrees of interventions to achieve a negative fluid balance targeting the hydration level (HL) measured by BIA or a traditional fluid resuscitation (TRD) in which clinicians determined the fluid resuscitation regimen according to traditional parameters during 30 days of ICU management. The primary outcome was the 30-day primary fascial closure (PFC) rate. The secondary outcomes included the time to PFC, postoperative 7-day cumulative fluid balance (CFB) and adverse events within 30 days after OA. The Kaplan–Meier method and the log-rank test were utilized for PFC after OA. A generalized linear regression model for the time to PFC and CFB was built. A total of 134 patients completed the trial (BIA, n = 66; TRD, n = 68). The BIA patients were significantly more likely to achieve PFC than the TRD patients (83.33% vs. 55.88%, P < 0.001). In the BIA group, the time to PFC occurred earlier than that of the TRD group by an average of 3.66 days (P < 0.001). Additionally, the BIA group showed a lower postoperative 7-day CFB by an average of 6632.80 ml (P < 0.001) and fewer complications. Among postinjury OA patients in the ICU, the use of BIA-guided fluid resuscitation resulted in a higher PFC rate and fewer severe complications than the traditional fluid resuscitation strategy.

Tài liệu tham khảo

Roberts DJ, Ball CG, Feliciano DV, Moore EE, Ivatury RR, Lucas CE, et al. History of the innovation of damage control for management of trauma patients: 1902-2016. Ann Surg. 2017;265(5):1034–44. https://doi.org/10.1097/SLA.0000000000001803. Balogh ZJ, Lumsdaine W, Moore EE, Moore FA. Postinjury abdominal compartment syndrome: from recognition to prevention. Lancet. 2014;384(9952):1466–75. https://doi.org/10.1016/S0140-6736(14)61689-5. Rogers WK, Garcia L. Intraabdominal hypertension, abdominal compartment syndrome, and the open abdomen. Chest. 2018;153(1):238–50. https://doi.org/10.1016/j.chest.2017.07.023. Sava J, Alam HB, Vercruysse G, Martin M, Brown CVR, Brasel K, et al. Western trauma association critical decisions in trauma: management of the open abdomen after damage control surgery. J Trauma Acute Care Surg. 2019;87(5):1232–8. https://doi.org/10.1097/TA.0000000000002389. Cheatham ML, Safcsak K, Brzezinski SJ, Lube MW. Nitrogen balance, protein loss, and the open abdomen. Crit Care Med. 2007;35(1):127–31. https://doi.org/10.1097/01.CCM.0000250390.49380.94. Dubose JJ, Scalea TM, Holcomb JB, Shrestha B, Okoye O, Inaba K, et al. Open abdominal management after damage-control laparotomy for trauma: a prospective observational American Association for the Surgery of Trauma multicenter study. J Trauma Acute Care Surg. 2013;74(1):113–20; discussion 1120-2. https://doi.org/10.1097/TA.0b013e31827891ce. Bradley MJ, Dubose JJ, Scalea TM, Holcomb JB, Shrestha B, Okoye O, et al. Independent predictors of enteric fistula and abdominal sepsis after damage control laparotomy: results from the prospective AAST open abdomen registry. JAMA Surg. 2013;148(10):947–54. https://doi.org/10.1001/jamasurg.2013.2514. Fox N, Crutchfield M, Lachant M, Ross SE, Seamon MJ. Early abdominal closure improves long-term outcomes after damage-control laparotomy. J Trauma Acute Care Surg. 2013;75(5):854–8. https://doi.org/10.1097/TA.0b013e3182a8fe6b. Coccolini F, Roberts D, Ansaloni L, Ivatury R, Gamberini E, Kluger Y, et al. The open abdomen in trauma and non-trauma patients: WSES guidelines. World J Emerg Surg. 2018;13(1):7. https://doi.org/10.1186/s13017-018-0167-4. Madigan MC, Kemp CD, Johnson JC, Cotton BA. Secondary abdominal compartment syndrome after severe extremity injury: are early, aggressive fluid resuscitation strategies to blame? J Trauma. 2008;64(2):280–5. https://doi.org/10.1097/TA.0b013e3181622bb6. Holodinsky JK, Roberts DJ, Ball CG, Blaser AR, Starkopf J, Zygun DA, et al. Risk factors for intra-abdominal hypertension and abdominal compartment syndrome among adult intensive care unit patients: a systematic review and meta-analysis. Crit Care. 2013;17(5):R249. https://doi.org/10.1186/cc13075. Hatch QM, Osterhout LM, Ashraf A, Podbielski J, Kozar RA, Wade CE, et al. Current use of damage-control laparotomy, closure rates, and predictors of early fascial closure at the first take-back. J Trauma. 2011;70(6):1429–36. https://doi.org/10.1097/TA.0b013e31821b245a. Lambertz A, Mihatsch C, Roth A, Kalverkamp S, Eickhoff R, Neumann UP, et al. Fascial closure after open abdomen: initial indication and early revisions are decisive factors--a retrospective cohort study. Int J Surg. 2015;13:12–6. https://doi.org/10.1016/j.ijsu.2014.11.025. Cristaudo AT, Jennings SB, Hitos K, Gunnarsson R, Decosta A. Treatments and other prognostic factors in the management of the open abdomen: a systematic review. J Trauma Acute Care Surg. 2017;82(2):407–18. https://doi.org/10.1097/TA.0000000000001314. Goussous N, Kim BD, Jenkins DH, Zielinski MD. Factors affecting primary fascial closure of the open abdomen in the nontrauma patient. Surgery, 2012;152(4):777–83; discussion 783-4. https://doi.org/10.1016/j.surg.2012.07.015. Samoni S, Vigo V, Resendiz LI, Villa G, De Rosa S, Nalesso F, et al. Impact of hyperhydration on the mortality risk in critically ill patients admitted in intensive care units: comparison between bioelectrical impedance vector analysis and cumulative fluid balance recording. Crit Care. 2016;20(1):95. https://doi.org/10.1186/s13054-016-1269-6. Van Haren F. Personalised fluid resuscitation in the ICU: still a fluid concept? Crit Care. 2017;21(Suppl 3):313. https://doi.org/10.1186/s13054-017-1909-5. Holcomb JB, Del Junco DJ, Fox EE, Wade CE, Cohen MJ, Schreiber MA, et al. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg. 2013;148(2):127–36. https://doi.org/10.1001/2013.jamasurg.387. Cantle PM, Cotton BA. Balanced resuscitation in trauma management. Surg Clin North Am. 2017;97(5):999–1014. https://doi.org/10.1016/j.suc.2017.06.002. Cotton BA, Reddy N, Hatch QM, Lefebvre E, Wade CE, Kozar RA, et al. Damage control resuscitation is associated with a reduction in resuscitation volumes and improvement in survival in 390 damage control laparotomy patients. Ann Surg. 2011;254(4):598–605. https://doi.org/10.1097/SLA.0b013e318230089e. Duke MD, Guidry C, Guice J, Stuke L, Marr AB, Hunt JP, et al. Restrictive fluid resuscitation in combination with damage control resuscitation: time for adaptation. J Trauma Acute Care Surg. 2012;73(3):674–8. https://doi.org/10.1097/TA.0b013e318265ce1f. Loftus TJ, Efron PA, Bala TM, Rosenthal MD, Croft CA, Smith RS, et al. Hypertonic saline resuscitation after emergent laparotomy and temporary abdominal closure. J Trauma Acute Care Surg. 2018;84(2):350–7. https://doi.org/10.1097/TA.0000000000001730. Ghneim MH, Regner JL, Jupiter DC, Kang F, Bonner GL, Bready MS, et al. Goal directed fluid resuscitation decreases time for lactate clearance and facilitates early fascial closure in damage control surgery. Am J Surg. 2013;206(6):995–9; discussion 9-1000. https://doi.org/10.1016/j.amjsurg.2013.07.021. Harvin JA, Mims MM, Duchesne JC, Cox CS Jr, Wade CE, Holcomb JB, et al. Chasing 100%: the use of hypertonic saline to improve early, primary fascial closure after damage control laparotomy. J Trauma Acute Care Surg. 2013;74(2):426–30; discussion 431-2. https://doi.org/10.1097/TA.0b013e31827e2a96. Smith JW, Garrison RN, Matheson PJ, Franklin GA, Harbrecht BG, Richardson JD. Direct peritoneal resuscitation accelerates primary abdominal wall closure after damage control surgery. J Am Coll Surg. 2010;210(5):658–64, 64-7. https://doi.org/10.1016/j.jamcollsurg.2010.01.014. Huang Q, Zhao R, Yue C, Wang W, Zhao Y, Ren J, et al. Fluid volume overload negatively influences delayed primary facial closure in open abdomen management. J Surg Res. 2014;187(1):122–7. https://doi.org/10.1016/j.jss.2013.09.032. Eastwood GM. Evaluating the reliability of recorded fluid balance to approximate body weight change in patients undergoing cardiac surgery. Heart Lung. 2006;35(1):27–33. https://doi.org/10.1016/j.hrtlng.2005.06.001. Perren A, Markmann M, Merlani G, Marone C, Merlani P. Fluid balance in critically ill patients. Should we really rely on it? Minerva Anestesiol. 2011;77(8):802–11. Cordemans C, De Laet I, Van Regenmortel N, Schoonheydt K, Dits H, Huber W, et al. Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance. Ann Intensive Care. 2012;2(Suppl 1):S1. https://doi.org/10.1186/2110-5820-2-S1-S1. Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, Bosy-Westphal A, et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas. 2006;27(9):921–33. https://doi.org/10.1088/0967-3334/27/9/012. Malbrain ML, Huygh J, Dabrowski W, De Waele JJ, Staelens A, Wauters J. The use of bio-electrical impedance analysis (BIA) to guide fluid management, resuscitation and deresuscitation in critically ill patients: a bench-to-bedside review. Anaesthesiol Intensive Ther. 2014;46(5):381–91. https://doi.org/10.5603/AIT.2014.0061. Samoni S, Vigo V, Resendiz LIB, Villa G, De Rosa S, Nalesso F, et al. Impact of hyperhydration on the mortality risk in critically ill patients admitted in intensive care units: comparison between bioelectrical impedance vector analysis and cumulative fluid balance recording. Crit Care. 2016;20:8. Kirkpatrick AW, Roberts DJ, Faris PD, Ball CG, Kubes P, Tiruta C, et al. Active negative pressure peritoneal therapy after abbreviated laparotomy: the intraperitoneal vacuum randomized controlled trial. Ann Surg. 2015;262(1):38–46. https://doi.org/10.1097/SLA.0000000000001095. Rasilainen SK, Mentula PJ, Leppaniemi AK. Vacuum and mesh-mediated fascial traction for primary closure of the open abdomen in critically ill surgical patients. Br J Surg. 2012;99(12):1725–32. https://doi.org/10.1002/bjs.8914. Boele Van Hensbroek P, Wind J, Dijkgraaf MG, Busch OR, Goslings JC. Temporary closure of the open abdomen: a systematic review on delayed primary fascial closure in patients with an open abdomen. World J Surg. 2009;33(2):199–207. https://doi.org/10.1007/s00268-008-9867-3. Valle R, Aspromonte N, Milani L, Peacock FW, Maisel AS, Santini M, et al. Optimizing fluid management in patients with acute decompensated heart failure (ADHF): the emerging role of combined measurement of body hydration status and brain natriuretic peptide (BNP) levels. Heart Fail Rev. 2011;16(6):519–29. https://doi.org/10.1007/s10741-011-9244-4. Carlson GL, Patrick H, Amin AI, Mcpherson G, Maclennan G, Afolabi E, et al. Management of the open abdomen: a national study of clinical outcome and safety of negative pressure wound therapy. Ann Surg. 2013;257(6):1154–9. https://doi.org/10.1097/SLA.0b013e31828b8bc8. Chen HY, Wu BY, Gong DH, Liu ZH. Fluid overload at start of continuous renal replacement therapy is associated with poorer clinical condition and outcome: a prospective observational study on the combined use of bioimpedance vector analysis and serum N-terminal pro-B-type natriuretic peptide measurement. Crit Care. 2015;19(1):135. Piccoli A. Italian C-BIaSG. Bioelectric impedance vector distribution in peritoneal dialysis patients with different hydration status. Kidney Int. 2004;65(3):1050–63. https://doi.org/10.1111/j.1523-1755.2004.00467.x. Donadio C, Consani C, Ardini M, Bernabini G, Caprio F, Grassi G, et al. Estimate of body water compartments and of body composition in maintenance hemodialysis patients: comparison of single and multifrequency bioimpedance analysis. J Ren Nutr. 2005;15(3):332–44. https://doi.org/10.1016/j.jrn.2005.04.001. Gong J, Zuo L, Guo Z, Zhang L, Li Y, Gu L, et al. Impact of disease activity on resting energy expenditure and body composition in adult crohn's disease: a prospective longitudinal assessment. JPEN J Parenter Enteral Nutr. 2015;39(6):713–8. https://doi.org/10.1177/0148607114528360. Miller RS, Morris JA Jr, Diaz JJ Jr, Herring MB, May AK. Complications after 344 damage-control open celiotomies. J Trauma. 2005;59(6):1365–71; discussion 1371-4,. https://doi.org/10.1097/01.ta.0000196004.49422.af. Bradley M, Galvagno S, Dhanda A, Rodriguez C, Lauerman M, Dubose J, et al. Damage control resuscitation protocol and the management of open abdomens in trauma patients. Am Surg. 2014;80(8):768–75. https://doi.org/10.1177/000313481408000825. Smith JW, Matheson PJ, Franklin GA, Harbrecht BG, Richardson JD, Garrison RN. Randomized controlled trial evaluating the efficacy of peritoneal resuscitation in the management of trauma patients undergoing damage control surgery. J Am Coll Surg. 2017;224(4):396–404. https://doi.org/10.1016/j.jamcollsurg.2016.12.047. Teixeira PG, Inaba K, Dubose J, Salim A, Brown C, Rhee P, et al. Enterocutaneous fistula complicating trauma laparotomy: a major resource burden. Am Surg. 2009;75(1):30–2. https://doi.org/10.1177/000313480907500106. Diaz JJ Jr, Dutton WD, Ott MM, Cullinane DC, Alouidor R, Armen SB, et al. Eastern association for the surgery of trauma: a review of the management of the open abdomen--part 2 "management of the open abdomen". J Trauma. 2011;71(2):502–12. https://doi.org/10.1097/TA.0b013e318227220c.