Phân hủy sinh học nước thải dầu mỏ để sản xuất điện sinh học bằng cách sử dụng sinh khối bùn hoạt tính

Anwar Ahmad1, Alaya Said Senaidi1, Amal S. Al-Rahbi2, Salam K. Al-dawery3
1Civil and Environmental Engineering Department, College of Engineering and Architecture, University of Nizwa, Nizwa, Sultanate of Oman
2Chemistry Section-Applied Sciences, Higher College of Technology, University Technology and Applied Sciences, Muscat, Sultanate of Oman
3Chemical Petroleum Engineering Department, College of Engineering and Architecture, University of Nizwa, Nizwa, Sultanate of Oman

Tóm tắt

Nghiên cứu này dựa trên việc xử lý nước thải dầu mỏ (PWW) bằng bùn hoạt tính đã được tiền xử lý để sản xuất điện và loại bỏ nhu cầu oxy hóa học (COD) bằng cách sử dụng pin vi sinh vật (MFC). Ứng dụng hệ thống MFC sử dụng sinh khối bùn hoạt tính (ASB) làm chất nền đã dẫn đến việc giảm COD đến 89,5% so với giá trị ban đầu. Nó tạo ra điện với cường độ tương đương 8,18 mA/m2 có thể tái sử dụng. Điều này sẽ giải quyết phần lớn các cuộc khủng hoảng môi trường mà chúng ta đang phải đối mặt hiện nay. Nghiên cứu này thảo luận về ứng dụng của ASB để tăng cường sự phân hủy PWW nhằm tạo ra mật độ công suất là 1012,95 mW/m2 khi áp dụng điện áp 0,75 V ở tỷ lệ 30:70% của ASB khi MFC hoạt động ở chế độ liên tục. Sự phát triển của sinh khối vi sinh vật được xúc tác bằng cách sử dụng sinh khối bùn hoạt tính. Sự phát triển của vi sinh vật đã được quan sát qua kính hiển vi điện tử quét. Thông qua quá trình oxy hóa trong hệ thống MFC, điện sinh học được tạo ra và sử dụng trong buồng catot. Hơn nữa, MFC hoạt động với ASB ở tỷ lệ 35 với mật độ dòng điện, đã giảm xuống còn 494,76 mW/m2 ở 10% ASB. Các thí nghiệm của chúng tôi chứng minh rằng hiệu suất của hệ thống MFC có thể tạo ra điện sinh học và xử lý nước thải dầu mỏ bằng cách sử dụng sinh khối bùn hoạt tính.

Từ khóa

#nước thải dầu mỏ #xử lý nước thải #sinh khối bùn hoạt tính #pin vi sinh vật #điện sinh học #phần hủy sinh học

Tài liệu tham khảo

ALharbi FR, Csala D. GCC countries renewable energy penetration and the progress of their energy sector project. IEEE. 2020;8:1. Sarmin S, Ethiraj B, Islam M, et al. Bio-electrochemical Power generation in petrochemical wastewater fed microbial fuel cell. Sci Total Environ. 2019;133820. Kadier A, Kalil MS, Logrono W, et al. Hydrogen production through electrolysis. Springer Science & Business Media, 2019; 799–818. 4. Ahmad A, Ghufran R. Microbial granules on reactors performance during organic butyrate digestion: clean production. Crit Rev Biotechnol. 2022. https://doi.org/10.1080/07388551.2022.2103641. Srivastava RK, Boddula R, Pothu R. Microbial fuel cells: Technologically advanced devices and approach for sustainable/renewable energy development. Energy Conver Manage. 2022;13: 100160. Jafarinejad S, Jiang SC. Current technologies and future directions for treating petroleum refineries and petrochemical plants (PRPP) wastewaters. J Environ Chem Eng. 2019;7: 103326. Akintayo CO, Aremu OH, Igboama WN, et al. Performance Evaluation of Ultra-Violet Light and Iron Oxide nanoparticles for the treatment of synthetic petroleum wastewater:kinetics of COD remval. Material. 2012;1–3. Wang C, Chen Z, Li Y, et al. Refnery wastewater treatment via a multistage enhanced biochemical process. Sci Rep. 2021;1–2. Elmobarak WF, Hameed BH, Almomani F, Abdullah AZ. A review on the treatment of petroleum refinery wastewater using advanced oxidation processes. Catalysts. 2021;1–3. Livingston T, Abbassi B. A comparative review and multi-criteria analysis of petroleum refnery wastewater treatment technologies. Environmental. 2018;66–78. Liang J, Mai W and Tang J, et al. Highly effective treatment of petrochemical wastewater by a super-sized industrial scale plant with expanded granular sludge bed bioreactor and aerobic activated sludge. Chem Eng. 2019;15–23. Wei Y, Jin Y, Zhang W. Treatment of high-concentration wastewater from an oil and gas field via a paired sequencing batch and ceramic membrane reactor. Environ Res Public Health. 2020;1–2. Tang J, Zhang C, Shi X, et al. Municipal wastewater treatment plants coupled with electrochemical, biological and bio-electrochemical technologies: Opportunities and challenge toward energy self-sufficiency. Environ Manage. 2019;396–403. Roy M, Saha R. Dyes and their removal technologies from wastewater: A critical review. In: Intelligent environmental data monitoring for pollution management. 2012; pp. 127–160. Capodaglio AG, Olsson G. Energy issues in sustainable urban wastewater management: Use, demand reduction and recovery in the urban water cycle. Sustainability. 2019;1–12. Santos RED, Santos IFC, Barros RM, et al. Generating electrical energy through urban solid waste in Brazil: An economic and energy comparative analysis. Environ Manage. 2019;198–206. Zarei M. Wastewater resources management for energy recovery from circular economy perspective. Water-Energy Nexus. 2020;170–185. Moradian JM, Fang Z, Yong YC. Recent advances on biomass-fueled microbial fuel cell. Bioresour Bioprocess. 2021;8:14. https://doi.org/10.1186/s40643-021-00365-7. Dahlke S, Sterling J, Meehan C. Policy and market drivers for advancing clean energy. Adv Clean Energy Technol. 2021;451–485. Fagunwa OE, Olanbiwoninu AA. Accelerating the sustainable development goals through microbiology: some efforts and opportunities. Microbiology. 2020;1–11. Barbosa SG, Peixoto L, Alves JI, Alves MM. Bioelectrochemical systems (BESs) towards conversion of carbon monoxide/syngas: A mini-review. Renew Sustain Energy Rev. 2020;1–10. Arshi S, Nozari-Asbemarz M, Magner E. Enzymatic bioreactors: An electrochemical perspective. Catalysts. 2020;1–25. Vasilenko V, Arkadeva I, Bogdanovskaya V, et al. Glucose-oxygen biofuel cell with biotic and abiotic catalysts: Experimental research and mathematical modeling. Energies. 2020;1–21. Dange P, Pandit S, Jadhav D, et al. Recent developments in microbial electrolysis cell-based biohydrogen production utilizing wastewater as a feedstock. Sustainablitiy. 2021;2–37. Al-Asheh S, Al-Assaf Y, Aidan A. Single-chamber microbial fuel cells’ behavior at different operational scenarios. Energies. 2020;1–13. Süli F. Sustainability, in electronic enclosures, housings and packages. 2019; pp. 365–414. Ratheesh, A, Elias L, Shibli SMA. Tuning of electrode surface for enhanced bacterial adhesion and reactions. A review on recent approaches. ACS Publ. 2021;5809–5838. Lia D, Şahin S, Izadi P, et al. Biological and microbial fuel cells. Earth Syst Environ Sci. 2021;277–300. Paucar NE, Sato C. Microbial fuel cell for energy production, nutrient removal and recovery from wastewater: A review. Processes. 2021;3–25. Munoz-Cupa C, Hu Y, Xu(Charles) C, et al. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Sci Total Environ. 2021;3–7. Li D, Şahin S, Izadi P, et al. Biological and microbial fuel cells reference module in earth systems and environmental sciences. 2021;277–300. Elsaid E, Elkamel A, Sayed ET, et al. Carbon-based nanomaterial for emerging desalination technologies: Electrodialysis and capacitive deionization. Encycl Smart Mater. 2022;411–420. Li S, Ho SH, Hua T, et al. Sustainable biochar as an electrocatalysts for the oxygen reduction reaction in microbial fuel cells. Green Energy Environ. 2020;644–659. Choudhury P, Uday USP, Bandyopadhyay TK, et al. Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review. Bioengineered. 2017;471–487. Mokobi F. Microscopy » Scanning Electron Microscope (SEM)- Definition, principle, parts, images. Microbe notes. 2021. Ali N, Anam M, Yousaf S, et al. Characterization of the electric current generation potential of the pseudomonas aeruginosa using glucose, fructose, and sucrose in double chamber microbial fuel cell. Iran J Biotechnol. 2017;15:216. Carlotta-Jones DI, Purdy K, Kirwan K, et al. Improved hydrogen gas production in microbial electrolysis cells using inexpensive recycled carbon fibre fabrics. Bioresour Technol. 2020;122983. Satinover SJ, Schel D, Borole AP. Achieving high hydrogen productivities of 20 L/L-day via microbial electrolysis of corn stover fermentation products. Appl Energy. 2019;13. Koul Y, Devda V, Varjani S, et al. Microbial electrolysis: a promising approach for treatment and resource recovery from industrial wastewater. Bioengineer. 2022;13(4):8115–34. Nosek D, Jachimowicz P, Cydzik-Kwiatkowska A, et al. Modifcation as an alternative approach to improve electricity generation in microbial fuel cells. Energies. 2020;13:6596. Wang N, Feng Y, Li Y, et al. Effects of ammonia on electrochemical active biofilm in Microbial Electrolysis Cells for synthetic swine wastewater treatment. Water Res. 2022;118570. Tsekouras GJ, Deligianni PM, Kanellos FD, et al. Microbial fuel cell for wastewater treatment as power plant in smart grids: Utopia or reality? Front Energy Res. 2022;10: 843768. Islam MA, Ehiraj B, Cheng CK, et al. Biofilm re-vitalization using hydrodynamic shear stress for stable power generation in microbial fuel cell. J Electroanal Chem. 2019;844:14–22. Wu D, Sun F, Chua FJD, et al. In-situ power generation and nutrients recovery from waste activated sludge–long-term performance and 10 S. Sarmin et al. / Science of the Total Environment 695 (2019) 133820 system optimization. Chem Eng J. 2019;361:1207–14. Mahmoud RH, Gomaa OM, Hassan RYA. Bio-electrochemical frameworks governing microbial fuel cell performance: technical bottlenecks and proposed solutions. RSC Adv. 2022;12:5749–64. Mahmoud RH, Samhan FA, Ibrahim MK, et al. Formation of electroactive biofilms derived by nanostructured anodes surfaces. Bioprocess Biosyst Eng. 2021;759–768. Bagchi S, Behera M. Evaluation of the effect of anolyte recirculation and anolyte pH on the performance of a microbial fuel cell employing ceramic separator. Process Biochem. 2021;102:207–12. Obileke K, Onyeaka H, Meyer EL, et al. Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochem Commun. 2021;125: 107003. Tan SM, Ong SA, Ho LN, et al. The reaction of wastewater treatment and power generation of single chamber microbial fuel cell against substrate concentration and anode distributions. J Environ Health Sci Eng. 2020;18:793–807. Yusoff MZM, Feng AHC, Maeda T, et al. Influence of pretreated activated sludge for electricity generation in microbial fuel cell application. Bioresour Technol. 2013;145:90–6. Moradian JM, Fang Z, Yong YC. Recent advances on biomass-fueled microbial fuel cell. Bioresour Bioprocess. 2021;8:14. https://doi.org/10.1186/s40643-021-00365-7. Nawaz A, Haq I, Qaisar K, et al. Microbial fuel cells: Insight into simultaneous wastewater treatment and bioelectricity generation. Process Saf Environ Prot. 2022;161:357–73. Negassa LW, Mohiuddin M, Tiruye GA. Treatment of brewery industrial wastewater and generation of sustainable bioelectricity by microbial fuel cell inoculated with locally isolated microorganisms. J Water Process Eng. 2021;41: 102018. Hoang AT, Nižetí CS, Ng KH, et al. Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector. Chemosphere. 2022;287:132285. Mukherjee A, Patel R, Zaveri P, et al. Microbial fuel cell performance for aromatic hydrocarbon bioremediation and common effluent treatment plant wastewater treatment with bioelectricity generation through series-parallel connection. 2021. https://doi.org/10.1111/lam.13612 Yousefi R, Mardanpour MM, Yaghmaei S. Fabrication of the macro and micro-scale microbial fuel cells to monitor oxalate biodegradation in human urine. Sci Rep 2021;1.