Biodegradable Materials for Bone Repair and Tissue Engineering Applications

Materials - Tập 8 Số 9 - Trang 5744-5794
Zeeshan Sheikh1, Shariq Najeeb2, Zohaib Khurshid3,4, Vivek Verma5, Haroon Rashid6, Michael Glogauer7
1Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada. [email protected].
2School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TN, UK. [email protected].
3Biomaterials Department of Biomedical Engineering, School of Engineering, King Faisal University, Al-Hofuf 31982, Saudi Arabia. [email protected].
4School of Materials and Metallurgy, University of Birmingham, Birmingham B15 2TT, UK. [email protected].
5Faculty of Dentistry, Division of Biomedical Sciences, McGill University, 2001 McGill College Avenue, Montreal, QC H3A 1G1, Canada. [email protected].
6College of Dentistry, Division of Prosthodontics, Ziauddin University, 4/B, Clifton, Karachi 7550, Pakistan. [email protected].
7Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada. [email protected].

Tóm tắt

This review discusses and summarizes the recent developments and advances in the use of biodegradable materials for bone repair purposes. The choice between using degradable and non-degradable devices for orthopedic and maxillofacial applications must be carefully weighed. Traditional biodegradable devices for osteosynthesis have been successful in low or mild load bearing applications. However, continuing research and recent developments in the field of material science has resulted in development of biomaterials with improved strength and mechanical properties. For this purpose, biodegradable materials, including polymers, ceramics and magnesium alloys have attracted much attention for osteologic repair and applications. The next generation of biodegradable materials would benefit from recent knowledge gained regarding cell material interactions, with better control of interfacing between the material and the surrounding bone tissue. The next generations of biodegradable materials for bone repair and regeneration applications require better control of interfacing between the material and the surrounding bone tissue. Also, the mechanical properties and degradation/resorption profiles of these materials require further improvement to broaden their use and achieve better clinical results.

Từ khóa


Tài liệu tham khảo

Driessens, 1980, Probable phase composition of the mineral in bone, Z. Naturfor. Sect. C, 35, 357, 10.1515/znc-1980-5-601

Athanasiou, 2000, Fundamentals of biomechanics in tissue engineering of bone, Tissue Eng., 6, 361, 10.1089/107632700418083

Driessens, 1978, Biological calcium phosphates and their role in the physiology of bone and dental tissues I. Composition and solubility of calcium phosphates, Calcif. Tissue Res., 26, 127, 10.1007/BF02013247

Yaszemski, 1996, Evolution of bone transplantation: Molecular, cellular and tissue strategies to engineer human bone, Biomaterials, 17, 175, 10.1016/0142-9612(96)85762-0

Rabie, 2000, Composite autogenous bone and demineralized bone matrices used to repair defects in the parietal bone of rabbits, Br. J. Oral Maxillofac. Surg., 38, 565, 10.1054/bjom.2000.0464

Cavalcanti, 2008, Histological and histomorphometric analyses of calcium phosphate cement in rabbit calvaria, J. Cranio Maxillo Facial Surg., 36, 354, 10.1016/j.jcms.2008.02.005

Goodrich, 2012, A review of reconstructive materials for use in craniofacial surgery bone fixation materials, bone substitutes, and distractors, Child’s Nerv. Syst., 28, 1577, 10.1007/s00381-012-1776-y

Curtis, 2005, Fixation principles in metaphyseal bone—A patent based review, Osteoporos. Int., 16, S54, 10.1007/s00198-004-1763-6

Eglin, 2008, Degradable polymeric materials for osteosynthesis: Tutorial, Eur. Cell Mater., 16, 80, 10.22203/eCM.v016a09

Christensen, 2000, Titanium-alloy enhances bone-pedicle screw fixation: Mechanical and histomorphometrical results of titanium-alloy versus stainless steel, Eur. Spine J., 9, 97, 10.1007/s005860050218

Eppley, 1995, A comparison of resorbable and metallic fixation in healing of calvarial bone grafts, Plast. Reconstr. Surg., 96, 316, 10.1097/00006534-199508000-00009

Marti, 1997, Metallic versus bioabsorbable interference screw for fixation of bone-patellar tendon-bone autograft in arthroscopic anterior cruciate ligament reconstruction. A preliminary report, Knee Surg. Sports Traumatol. Arthrosc., 5, 217, 10.1007/s001670050053

Alexander, 1993, Fracture of the bone-grafted mandible secondary to stress shielding: Report of a case and review of the literature, J. Oral Maxillofac. Surg., 51, 695, 10.1016/S0278-2391(10)80273-3

Sumner, 2015, Long-term implant fixation and stress-shielding in total hip replacement, J. Biomech., 48, 797, 10.1016/j.jbiomech.2014.12.021

Chanlalit, 2012, Stress shielding around radial head prostheses, J. Hand Surg., 37, 2118, 10.1016/j.jhsa.2012.06.020

Haase, 2013, Prediction of stress shielding around an orthopedic screw: Using stress and strain energy density as mechanical stimuli, Comput. Biol. Med., 43, 1748, 10.1016/j.compbiomed.2013.07.032

Rabie, 2000, Healing of autogenous intramembranous bone in the presence and absence of homologous demineralized intramembranous bone, Am. J. Orthod. Dentofac. Orthop., 117, 288, 10.1016/S0889-5406(00)70233-2

Gamradt, 2003, Bone graft for revision hip arthroplasty: Biology and future applications, Clin. Orthop. Relat. Res., 417, 183, 10.1097/01.blo.0000096814.78689.77

MR, U. (1980). Fundamental and Clinical Bone Physiology, JB Lippincott.

Goldberg, 2000, Selection of bone grafts for revision total hip arthroplasty, Clin. Orthop. Relat. Res., 381, 68, 10.1097/00003086-200012000-00008

Shen, 2005, Cell technologies for spinal fusion, Spine J., 5, 231S, 10.1016/j.spinee.2005.02.008

Boyne, 1988, Bone induction and the use of HTR polymer as a vehicle for osseous inductor materials, Compendium, 10, S337

Glowacki, 1985, Demineralized bone implants, Clin. Plast. Surg., 12, 233, 10.1016/S0094-1298(20)31694-1

Banwart, 1995, Iliac crest bone graft harvest donor site morbidity. A statistical evaluation, Spine, 20, 1055, 10.1097/00007632-199505000-00012

Ross, 2000, Heterotopic bone formation causing recurrent donor site pain following iliac crest bone harvesting, Br. J. Neurosurg., 14, 476, 10.1080/02688690050175346

Skaggs, 2000, Complications of posterior iliac crest bone grafting in spine surgery in children, Spine, 25, 2400, 10.1097/00007632-200009150-00021

Summers, 1989, Donor site pain from the ilium. A complication of lumbar spine fusion, J. Bone Joint Surg. Br., 71, 677, 10.1302/0301-620X.71B4.2768321

Buck, 1989, Bone transplantation and human immunodeficiency virus. An estimate of risk of acquired immunodeficiency syndrome (aids), Clin. Orthop. Relat. Res., 240, 129, 10.1097/00003086-198903000-00015

Shetty, 1991, Alloplastic materials in reconstructive periodontal surgery, Dent. Clin. N. Am., 35, 521, 10.1016/S0011-8532(22)00855-2

Sabattini, 1991, Alloplastic implants (HA) for edentulous ridge augmentation before fixed dentures. Longitudinal reevaluation and histology, Prog. Odontoiatr., 4, 20

Schaschke, 2014, Editorial: Biodegradable materials, Int. J. Mol. Sci., 15, 21468, 10.3390/ijms151121468

Yeung, 2012, Biodegradable metallic materials for orthopaedic implantations: A review, Technol. Health Care, 20, 345, 10.3233/THC-2012-0685

LeGeros, 1993, Biodegradation and bioresorption of calcium phosphate ceramics, Clin. Mater., 14, 65, 10.1016/0267-6605(93)90049-D

Tevlin, 2014, Biomaterials for craniofacial bone engineering, J. Dent. Res., 93, 1187, 10.1177/0022034514547271

Freed, 1994, Biodegradable polymer scaffolds for tissue engineering, Nat. Biotechnol., 12, 689, 10.1038/nbt0794-689

Griffith, 2002, Tissue engineering—Current challenges and expanding opportunities, Science, 295, 1009, 10.1126/science.1069210

Burg, 2000, Biomaterial developments for bone tissue engineering, Biomaterials, 21, 2347, 10.1016/S0142-9612(00)00102-2

Sheikh, 2015, Bone replacement materials and techniques used for achieving vertical alveolar bone augmentation, Materials, 8, 2953, 10.3390/ma8062953

Sheikh, 2015, Bone regeneration using bone morphogenetic proteins and various biomaterial carriers, Materials, 8, 1778, 10.3390/ma8041778

Middleton, 2000, Synthetic biodegradable polymers as orthopedic devices, Biomaterials, 21, 2335, 10.1016/S0142-9612(00)00101-0

Wuisman, 2006, Bioresorbable polymers: Heading for a new generation of spinal cages, Eur. Spine J., 15, 133, 10.1007/s00586-005-1003-6

Hutmacher, 1996, A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications, Int. J. Oral Maxillofac. Implants, 11, 667

Ratner, B.D. (2004). Academic Press.

Tamimi, 2012, Dicalcium phosphate cements: Brushite and monetite, Acta Biomater., 8, 474, 10.1016/j.actbio.2011.08.005

Claes, 1992, Mechanical characterization of biodegradable implants, Clin. Mater., 10, 41, 10.1016/0267-6605(92)90083-6

Blackburn, 1992, Mechanical properties of microcallus in human cancellous bone, J. Orthop. Res., 10, 237, 10.1002/jor.1100100211

Tan, 2013, Biodegradable materials for bone repairs: A review, J. Mater. Sci. Technol., 29, 503, 10.1016/j.jmst.2013.03.002

Armentano, 2010, Biodegradable polymer matrix nanocomposites for tissue engineering: A review, Polymer Degrad. Stab., 95, 2126, 10.1016/j.polymdegradstab.2010.06.007

Witte, 2008, Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid State Mater. Sci., 12, 63, 10.1016/j.cossms.2009.04.001

Giannoudis, 2005, Bone substitutes: An update, Injury, 36, S20, 10.1016/j.injury.2005.07.029

Khoury, 1999, Augmentation of the sinus floor with mandibular bone block and simultaneous implantation: A 6-year clinical investigation, Int. J. Oral Maxillofac. Implants, 14, 557

Block, 2004, Horizontal ridge augmentation using human mineralized particulate bone: Preliminary results, J. Oral Maxillofac. Surg., 62, 67, 10.1016/j.joms.2004.05.209

Bolander, 1986, The use of demineralized bone matrix in the repair of segmental defects. Augmentation with extracted matrix proteins and a comparison with autologous grafts, J. Bone Joint Surg. Am., 68, 1264, 10.2106/00004623-198668080-00018

Araujo, 2013, Block allograft for reconstruction of alveolar bone ridge in implantology: A systematic review, Implant Dent., 22, 304, 10.1097/ID.0b013e318289e311

Sterio, 2013, A prospective, multicenter study of bovine pericardium membrane with cancellous particulate allograft for localized alveolar ridge augmentation, Int. J. Periodontics Restor. Dent., 33, 499, 10.11607/prd.1704

Whittaker, 1989, Histological response and clinical evaluation of heterograft and allograft materials in the elevation of the maxillary sinus for the preparation of endosteal dental implant sites. Simultaneous sinus elevation and root form implantation: An eight-month autopsy report, J. Oral Implantol., 15, 141

Valentini, 1997, Maxillary sinus floor elevation for implant placement with demineralized freeze-dried bone and bovine bone (bio-oss): A clinical study of 20 patients, Int. J. Periodontics Restor. Dent., 17, 232

Guerrero, 2012, Allograft for maxillary sinus floor augmentation: A retrospective study of 90 cases, Implant Dent., 21, 136, 10.1097/ID.0b013e31824a023b

Avila, 2010, Clinical and histologic outcomes after the use of a novel allograft for maxillary sinus augmentation: A case series, Implant Dent., 19, 330, 10.1097/ID.0b013e3181e59b32

Sohn, 2009, Histomorphometric evaluation of mineralized cancellous allograft in the maxillary sinus augmentation: A 4 case report, Implant Dent., 18, 172, 10.1097/ID.0b013e318199045d

Jo, 2015, Sequential delivery of BMP-2 and BMP-7 for bone regeneration using a heparinized collagen membrane, Int. J. Oral Maxillofac. Surg., 4, 921, 10.1016/j.ijom.2015.02.015

Cha, 2014, Sinus augmentation using BMP-2 in a bovine hydroxyapatite/collagen carrier in dogs, J. Clin. Periodontol., 41, 86, 10.1111/jcpe.12174

Geiger, 2003, Collagen sponges for bone regeneration with rhbmp-2, Adv. Drug Deliv. Rev., 55, 1613, 10.1016/j.addr.2003.08.010

John, 2001, A trial to prepare biodegradable collagen–hydroxyapatite composites for bone repair, J. Biomater. Sci. Polymer Ed., 12, 689, 10.1163/156856201316883485

Chung, 1990, Clinical evaluation of a biodegradable collagen membrane in guided tissue regeneration, J. Periodontol., 61, 732, 10.1902/jop.1990.61.12.732

Matilinna, K.P. (2014). Handbook of Oral Biomaterials, Pan Stanford Publishing.

Liu, 2004, Polymeric scaffolds for bone tissue engineering, Ann. Biomed. Eng., 32, 477, 10.1023/B:ABME.0000017544.36001.8e

Silva, 2007, Materials in particulate form for tissue engineering. 1. Basic concepts, J. Tissue Eng. Regen. Med., 1, 4, 10.1002/term.2

Lee, 2006, Enhanced bone formation by transforming growth factor-β1-releasing collagen/chitosan microgranules, J. Biomed. Mater. Res. A, 76, 530, 10.1002/jbm.a.30434

Zhao, 2008, Fabrication and properties of mineralized collagen-chitosan/hydroxyapatite scaffolds, Polym. Adv. Technol., 19, 1590, 10.1002/pat.1174

Lee, 2010, Silica xerogel-chitosan nano-hybrids for use as drug eluting bone replacement, J. Mater. Sci. Mater. Med., 21, 207, 10.1007/s10856-009-3835-9

Ambrose, C.G., Hartline, B.E., Clanton, T.O., Lowe, W.R., and McGarvey, W.C. (2015). Advanced Polymers in Medicine, Springer.

1992, Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties, Clin. Mater., 10, 29, 10.1016/0267-6605(92)90081-4

Christel, 1980, Biodegradable composites for internal fixation, Biomaterials, 1, 1

Linhart, 2001, Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials, J. Biomed. Mater. Res., 54, 162, 10.1002/1097-4636(200102)54:2<162::AID-JBM2>3.0.CO;2-3

Niu, 2009, Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2, J. Controll. Release, 134, 111, 10.1016/j.jconrel.2008.11.020

Xiong, 2001, Fabrication of porous poly (l-lactic acid) scaffolds for bone tissue engineering via precise extrusion, Scr. Mater., 45, 773, 10.1016/S1359-6462(01)01094-6

Higashi, 1986, Polymer-hydroxyapatite composites for biodegradable bone fillers, Biomaterials, 7, 183, 10.1016/0142-9612(86)90099-2

Razak, 2012, Biodegradable polymers and their bone applications: A review, Int. J. Basic Appl. Sci., 12, 31

Vert, 2005, Aliphatic polyesters: Great degradable polymers that cannot do everything, Biomacromolecules, 6, 538, 10.1021/bm0494702

Nejati, 2008, Synthesis and characterization of nano-hydroxyapatite rods/poly (l-lactide acid) composite scaffolds for bone tissue engineering, Compos. A, 39, 1589, 10.1016/j.compositesa.2008.05.018

Lagoa, 2008, A strut graft substitute consisting of a metal core and a polymer surface, J. Mater. Sci., 19, 417

Warden, 1999, Magnetic resonance imaging of bioabsorbable polylactic acid interference screws during the first 2 years after anterior cruciate ligament reconstruction, Arthroscopy, 15, 474, 10.1053/ar.1999.v15.015047

Bozic, 2001, Mechanical testing of bioresorbable implants for use in metacarpal fracture fixation, J. Hand Surg., 26, 755, 10.1053/jhsu.2001.24145

Ignatius, 1996, In vitro biocompatibility of bioresorbable polymers: Poly (l, dl-lactide) and poly (l-lactide-co-glycolide), Biomaterials, 17, 831, 10.1016/0142-9612(96)81421-9

Leenslag, 1987, Resorbable materials of poly (l-lactide): VII. In vivo and in vitro degradation, Biomaterials, 8, 311, 10.1016/0142-9612(87)90121-9

Kilpikari, 1987, Strength and strength retention vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation, Biomaterials, 8, 46, 10.1016/0142-9612(87)90028-7

Nam, 1999, Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation, J. Biomed. Mater. Res., 47, 8, 10.1002/(SICI)1097-4636(199910)47:1<8::AID-JBM2>3.0.CO;2-L

Nie, 2015, Macroporous biphasic calcium phosphate scaffolds reinforced by poly-l-lactic acid/hydroxyapatite nanocomposite coatings for bone regeneration, Biochem. Eng. J., 98, 29, 10.1016/j.bej.2015.02.026

Ji, 2010, BMP-2/PLGA delayed-release microspheres composite graft, selection of bone particulate diameters, and prevention of aseptic inflammation for bone tissue engineering, Ann. Biomed. Eng., 38, 632, 10.1007/s10439-009-9888-6

Gavenis, 2010, Bmp-7-loaded PGLA microspheres as a new delivery system for the cultivation of human chondrocytes in a collagen type I gel: The common nude mouse model, Int. J. Artif. Organs, 33, 45, 10.1177/039139881003300107

Fei, 2008, Preparation and property of a novel bone graft composite consisting of rhbmp-2 loaded PLGA microspheres and calcium phosphate cement, J. Mater. Sci., 19, 1109

Sheikh, F.A., Ju, H.W., Moon, B.M., Lee, O.J., Kim, J.H., Park, H.J., Kim, D.W., Kim, D.K., Jang, J.E., and Khang, G. (2015). Hybrid scaffolds based on PLGA and silk for bone tissue engineering. J. Tissue Eng. Regen. Med.

Chen, 2005, Poly (ε-caprolactone)/hydroxyapatite composites: Effects of particle size, molecular weight distribution and irradiation on interfacial interaction and properties, Polymer Test., 24, 64, 10.1016/j.polymertesting.2004.07.010

Wiria, 2007, Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering, Acta Biomater., 3, 1, 10.1016/j.actbio.2006.07.008

Yu, 2008, Effect of porosity and pore size on microstructures and mechanical properties of poly-ε-caprolactone-hydroxyapatite composites, J. Biomed. Mater. Res. Part B, 86, 541, 10.1002/jbm.b.31054

Porter, 2009, Biodegradable poly (ɛ-caprolactone) nanowires for bone tissue engineering applications, Biomaterials, 30, 780, 10.1016/j.biomaterials.2008.10.022

Pitt, 1981, Aliphatic polyesters II. The degradation of poly (d,l-lactide), poly (ε-caprolactone), and their copolymers in vivo, Biomaterials, 2, 215, 10.1016/0142-9612(81)90060-0

Litvinec, 2015, Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo, J. Biomed. Mater. Res. A, 103, 671, 10.1002/jbm.a.35216

Tokdemir, 2007, Early weight bearing of porous HA/TCP (60/40) ceramics in vivo: A longitudinal study in a segmental bone defect model of rabbit, Acta Biomater., 3, 985, 10.1016/j.actbio.2007.04.004

Quarto, 2001, Repair of large bone defects with the use of autologous bone marrow stromal cells, N. Engl. J. Med., 344, 385, 10.1056/NEJM200102013440516

Mardziah, 2009, Strontium-doped hydroxyapatite nanopowder via sol-gel method: Effect of strontium concentration and calcination temperature on phase behavior, Trends Biomater. Artif. Organs, 23, 105

Thian, 2006, Novel silicon-doped hydroxyapatite (Si-HA) for biomedical coatings: An in vitro study using acellular simulated body fluid, J. Biomed. Mater. Res. Part B, 76, 326, 10.1002/jbm.b.30368

Noshi, 2000, Enhancement of the in vivo osteogenic potential of marrow/hydroxyapatite composites by bovine bone morphogenetic protein, J. Biomed. Mater. Res., 52, 621, 10.1002/1097-4636(20001215)52:4<621::AID-JBM6>3.0.CO;2-A

Oonishi, 1991, Orthopaedic applications of hydroxyapatite, Biomaterials, 12, 171, 10.1016/0142-9612(91)90196-H

Cook, 1988, Hydroxyapatite-coated titanium for orthopedic implant applications, Clin. Orthop. Relat. Res., 232, 225, 10.1097/00003086-198807000-00030

Sopyan, 2007, Porous hydroxyapatite for artificial bone applications, Sci. Technol. Adv. Mater., 8, 116, 10.1016/j.stam.2006.11.017

Heise, 1990, Hydroxyapatite ceramic as a bone substitute, Int. Orthop., 14, 329, 10.1007/BF00178768

Kumar, 2015, Hydroxyapatite-titanium bulk composites for bone tissue engineering applications, J. Biomed. Mater. Res. Part A, 103, 791, 10.1002/jbm.a.35198

Pecina, 2015, Biological aspects of segmental bone defects management, Int. Orthop., 39, 1005, 10.1007/s00264-015-2728-4

Singh, 2014, The composite of hydroxyapatite with collagen as a bone grafting material, J. Adv. Med. Dent. Sci. Res., 2, 53

Hing, 2007, Comparative performance of three ceramic bone graft substitutes, Spine J., 7, 475, 10.1016/j.spinee.2006.07.017

Nandi, 2008, Evaluation of new porous β-tri-calcium phosphate ceramic as bone substitute in goat model, Small Rumin. Res., 75, 144, 10.1016/j.smallrumres.2007.09.006

Ghosh, 2008, In vivo response of porous hydroxyapatite and β-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds, J. Biomed. Mater. Res. B, 86, 217, 10.1002/jbm.b.31009

Cutright, 1972, Reaction of bone to tricalcium phosphate ceramic pellets, Oral Surg. Oral Med. Oral Pathol., 33, 850, 10.1016/0030-4220(72)90457-4

Bohner, 2001, Physical and chemical aspects of calcium phosphates used in spinal surgery, Eur. Spine J., 10, S114, 10.1007/s005860100276

Peter, S.J., Kim, P., Yasko, A.W., Yaszemski, M.J., and Mikos, A.G. (1998). Crosslinking Characteristics of an Injectable Poly (Propylene Fumarate)/β-tricalcium Phosphate Paste and Mechanical Properties of the Crosslinked Composite for Use as a Biodegradable Bone Cement, Cambridge University Press.

Miranda, 2006, Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications, Acta Biomater., 2, 457, 10.1016/j.actbio.2006.02.004

Galois, 2002, Beta-tricalcium phosphate ceramic as a bone substitute in orthopaedic surgery, Int. Orthop., 26, 109, 10.1007/s00264-001-0329-x

Zhang, X., Meng, S., Huang, Y., Xu, M., He, Y., Lin, H., Han, J., Chai, Y., Wei, Y., and Deng, X. (2015). Electrospun gelatin/β-TCP composite nanofibers enhance osteogenic differentiation of BMSCs and in vivo bone formation by activating Ca2+. Stem Cells Int.

Liu, 2012, Current application of β-tricalcium phosphate composites in orthopaedics, Orthop. Surg., 4, 139, 10.1111/j.1757-7861.2012.00189.x

Shadanbaz, 2012, Calcium phosphate coatings on magnesium alloys for biomedical applications: A review, Acta Biomater., 8, 20, 10.1016/j.actbio.2011.10.016

Tamimi, 2008, Brushite-collagen composites for bone regeneration, Acta Biomater., 4, 1315, 10.1016/j.actbio.2008.04.003

Tamimi, 2014, Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site, Biomaterials, 35, 5436, 10.1016/j.biomaterials.2014.03.050

Tamimi, 2010, Resorption of monetite granules in alveolar bone defects in human patients, Biomaterials, 31, 2762, 10.1016/j.biomaterials.2009.12.039

Tamimi, 2008, Doxycycline sustained release from brushite cements for the treatment of periodontal diseases, J. Biomed. Mater. Res. A, 85, 707, 10.1002/jbm.a.31610

Tamimi, 2009, Craniofacial vertical bone augmentation: A comparison between 3D printed monolithic monetite blocks and autologous onlay grafts in the rabbit, Biomaterials, 30, 6318, 10.1016/j.biomaterials.2009.07.049

Tamimi, 2009, Minimally invasive maxillofacial vertical bone augmentation using brushite based cements, Biomaterials, 30, 208, 10.1016/j.biomaterials.2008.09.032

Tamura, 2007, The use of porous beta-tricalcium phosphate blocks with platelet-rich plasma as an onlay bone graft biomaterial, J. Periodontol., 78, 315, 10.1902/jop.2007.060228

Marinno, 2007, Vertical bone augmentation with granulated brushite cement set in glycolic acid, J. Biomed. Mater. Res. A, 81, 93, 10.1002/jbm.a.31014

Peter, 1999, Reinforcement of osteosynthesis screws with brushite cement, Bone, 25, 95S, 10.1016/S8756-3282(99)00142-8

2010, Buccal dehiscence and sinus lift cases—Predictable bone augmentation with synthetic bone material, Implants, 11, 1

Paxton, 2010, Factors affecting the longevity and strength in an in vitro model of the bone-ligament interface, Ann. Biomed. Eng., 38, 2155, 10.1007/s10439-010-0044-0

Paxton, 2010, Engineering an in vitro model of a functional ligament from bone to bone, Tissue Eng. Part A, 16, 3515, 10.1089/ten.tea.2010.0039

Mehrban, 2011, Comparing physicochemical properties of printed and hand cast biocements designed for ligament replacement, Adv. Appl. Ceram., 110, 162, 10.1179/1743676110Y.0000000012

Theiss, 2005, Biocompatibility and resorption of a brushite calcium phosphate cement, Biomaterials, 26, 4383, 10.1016/j.biomaterials.2004.11.056

Zhou, 2014, Development of monetite-nanosilica bone cement: A preliminary study, J. Biomed. Mater. Res. Part B, 102, 1620, 10.1002/jbm.b.33149

Saska, 2015, Bone substitute materials in implant dentistry, Implant Dent., 2, 158

Hughes, 2015, Inorganic cements for biomedical application: Calcium phosphate, calcium sulphate and calcium silicate, Adv. Appl. Ceram., 114, 65, 10.1179/1743676114Y.0000000219

Mestres, 2015, Scavenging effect of trolox released from brushite cements, Acta Biomater., 11, 459, 10.1016/j.actbio.2014.09.007

Rodriguez, 2014, Preparation and characterization of injectable brushite filled-poly (methyl methacrylate) bone cement, Materials, 7, 6779, 10.3390/ma7096779

Zhang, 2014, Dual-functional biomaterials for bone regeneration and infection control, J. Biomater. Tissue Eng., 4, 875, 10.1166/jbt.2014.1269

Moseley, J.P., Carroll, M.E., and Mccanless, J.D. (2010). Composite Bone Graft Substitute Cement and Articles Produced Therefrom. (7,754,246), U.S. Patent.

Staiger, 2006, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 27, 1728, 10.1016/j.biomaterials.2005.10.003

Wong, 2010, A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants, Biomaterials, 31, 2084, 10.1016/j.biomaterials.2009.11.111

Zeng, 2008, Progress and challenge for magnesium alloys as biomaterials, Adv. Eng. Mater., 10, B3, 10.1002/adem.200800035

Waizy, 2013, Biodegradable magnesium implants for orthopedic applications, J. Mater. Sci., 48, 39, 10.1007/s10853-012-6572-2

Gu, 2010, A review on magnesium alloys as biodegradable materials, Front. Mater. Sci. China, 4, 111, 10.1007/s11706-010-0024-1

Witte, 2010, The history of biodegradable magnesium implants: A review, Acta Biomater., 6, 1680, 10.1016/j.actbio.2010.02.028

Liu, 2014, Preclinical investigation of an innovative magnesium-based bone graft substitute for potential orthopaedic applications, J. Orthop. Transl., 2, 139

Lyndon, 2014, Metallic implant drug/device combinations for controlled drug release in orthopaedic applications, J. Controll. Release, 179, 63, 10.1016/j.jconrel.2014.01.026

Chaya, 2015, In vivo study of magnesium plate and screw degradation and bone fracture healing, Acta Biomater., 18, 262, 10.1016/j.actbio.2015.02.010

Jiang, 2015, Fabrication of graded porous titanium–magnesium composite for load-bearing biomedical applications, Mater. Des., 67, 354, 10.1016/j.matdes.2014.12.001

Wong, S.-S. (2015). Investigation on Mg-Mn-Zn Alloys as Potential Biodegradable Materials for Orthopaedic Applications, The University of Hong Kong.

Chaya, 2015, Fracture healing using degradable magnesium fixation plates and screws, J. Oral Maxil. Surg., 73, 295, 10.1016/j.joms.2014.09.007

Zhou, 2015, A novel multilayer model with controllable mechanical properties for magnesium-based bone plates, J. Mater. Sci., 26, 1

Khakbaz, H., Walter, R., Gordon, T., and Kannan, M.B. (2014). Self-dissolution assisted coating on magnesium metal for biodegradable bone fixation devices. Mater. Res. Express, 1.

Tang, 2013, Surface coating reduces degradation rate of magnesium alloy developed for orthopaedic applications, J. Orthop. Transl., 1, 41

Koolen, 2015, Full regeneration of segmental bone defects using porous titanium implants loaded with BMP-2 containing fibrin gels, Eur. Cells Mater., 29, 141, 10.22203/eCM.v029a11

Mikos, A.G., Wong, M.E., Young, S.W., Kretlow, J.D., Shi, M., Kasper, K.F., and Spicer, P. (2014). Combined Space Maintenance and Bone Regeneration System for the Reconstruction of Large Osseous Defects. (20,150,081,034), US Patent.

Tomlinson, 2015, Mechanical performance in axial compression of a titanium polyaxial locking plate system in a fracture gap model, Vet. Comp. Orthop. Traumatol., 28, 88, 10.3415/VCOT-14-03-0046

Ellis, 2015, Biodegradable and titanium osteosynthesis provide similar stability for orthognathic surgery, J. Oral. Maxil. Surg., 73, 1795, 10.1016/j.joms.2015.01.035

Kang, 2014, Comparison of titanium and biodegradable plates for treating midfacial fractures, J. Oral. Maxil. Surg., 72, 761, 10.1016/j.joms.2013.12.020

Mazzoni, 2015, Cad-cam cutting guides and customized titanium plates useful in upper maxilla waferless repositioning, J. Oral. Maxillofac. Surg. 201, 73, 701, 10.1016/j.joms.2014.10.028

Paeng, 2012, Comparative study of skeletal stability between bicortical resorbable and titanium screw fixation after sagittal split ramus osteotomy for mandibular prognathism, J. Cranio Maxillofac. Surg., 40, 660, 10.1016/j.jcms.2011.11.001

Buijs, 2012, A randomized clinical trial of biodegradable and titanium fixation systems in maxillofacial surgery, J. Dent. Res., 91, 299, 10.1177/0022034511434353

Bhatnagar, 2013, Comparative analysis of osteosynthesis of mandibular anterior fractures following open reduction using “stainless steel lag screws and mini plates”, J. Maxillofac. Oral Surg., 12, 133, 10.1007/s12663-012-0397-z

Bender, 2012, Mechanical characterization and modeling of graded porous stainless steel specimens for possible bone implant applications, Int. J. Eng. Sci., 53, 67, 10.1016/j.ijengsci.2012.01.004

Chew, 2012, Corrosion resistance study of electrophoretic deposited hydroxyapatite on stainless steel for implant applications, Key Eng. Mater., 507, 141, 10.4028/www.scientific.net/KEM.507.141

Zivic, 2013, Influence of loose PMMA bone cement particles on the corrosion assisted wear of the orthopedic AISI 316LVM stainless steel during reciprocating sliding, Wear, 300, 65, 10.1016/j.wear.2013.01.109

Vallittu, 2015, Fiber glass–bioactive glass composite for bone replacing and bone anchoring implants, Dent. Mater., 31, 371, 10.1016/j.dental.2015.01.003

Yamamuro, 2012, Clinical applications of bioactive glass-ceramics, New Mater. Technol. Healthc., 1, 1

Rahaman, 2012, Bioactive glass in bone tissue engineering, Biomater. Sci., 237, 73

Hench, 2013, Chronology of bioactive glass development and clinical applications, Sci. Res., 3, 67

Balani, K., Narayan, R., Agarwal, A., and Verma, V. (2015). Surface engineering and modification for biomedical applications. Biosurfaces.

Fiorilli, 2015, Electrophoretic deposition of mesoporous bioactive glass on glass–ceramic foam scaffolds for bone tissue engineering, J. Mater. Sci., 26, 1

Bagheri, 2015, Osteogenesis and cytotoxicity of a new carbon fiber/flax/epoxy composite material for bone fracture plate applications, Mater. Sci. Eng., 46, 435, 10.1016/j.msec.2014.10.042

Pietrzak, 1997, Bioabsorbable polymer science for the practicing surgeon, J. Craniofac. Surg, 8, 87, 10.1097/00001665-199703000-00004

Miller, 1977, Degradation rates of oral resorbable implants (polylactates and polyglycolates): Rate modification with changes in PLA/PGA copolymer ratios, J. Biomed. Mater. Res., 11, 711, 10.1002/jbm.820110507

Bertesteanu, 2014, Biomedical applications of synthetic, biodegradable polymers for the development of anti-infective strategies, Curr. Med. Chem., 21, 3383, 10.2174/0929867321666140304104328

Ulery, 2011, Biomedical applications of biodegradable polymers, J. Polymer Sci. Part B Polymer Phys., 49, 832, 10.1002/polb.22259

Li, 1990, Structure-property relationships in the case of the degradation of massive poly (α-hydroxy acids) in aqueous media, J. Mater. Sci., 1, 198

Lloyd, 2001, Interfacial bioengineering to enhance surface biocompatibility, Med. Device Technol., 13, 18

Domb, A.J., Kost, J., and Wiseman, D. (1998). Handbook of Biodegradable Polymers, CRC Press.

Shalaby, S.W., and Burg, K.J. (2003). Absorbable and Biodegradable Polymers, CRC Press.

Pachence, 2000, Biodegradable polymers, Princ. Tissue Eng., 3, 323

Nair, 2007, Biodegradable polymers as biomaterials, Prog. Polymer Sci., 32, 762, 10.1016/j.progpolymsci.2007.05.017

Altman, 2003, Silk-based biomaterials, Biomaterials, 24, 401, 10.1016/S0142-9612(02)00353-8

Pachence, 1987, Collagen: Its place in the medical device industry, Med. Device Diagn. Ind., 9, 49

Chevallay, 2000, Collagen-based biomaterials as 3d scaffold for cell cultures: Applications for tissue engineering and gene therapy, Med. Biol. Eng. Comput., 38, 211, 10.1007/BF02344779

Reddi, 1998, Role of morphogenetic proteins in skeletal tissue engineering and regeneration, Nat. Biotechnol., 16, 247, 10.1038/nbt0398-247

Wang, 2006, Biomimetic formation of hydroxyapatite/collagen matrix composite, Adv. Eng. Mater., 8, 97, 10.1002/adem.200500220

Roveri, 2003, Biologically inspired growth of hydroxyapatite nanocrystals inside self-assembled collagen fibers, Mater. Sci. Eng., 23, 441, 10.1016/S0928-4931(02)00318-1

Zhang, 2003, Hierarchical self-assembly of nano-fibrils in mineralized collagen, Chem. Mater., 15, 3221, 10.1021/cm030080g

Kikuchi, 2001, Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo, Biomaterials, 22, 1705, 10.1016/S0142-9612(00)00305-7

Rhee, 2000, Nucleation of hydroxyapatite crystal through chemical interaction with collagen, J. Am. Ceram. Soc., 83, 2890, 10.1111/j.1151-2916.2000.tb01656.x

Hsu, 1999, Microspheres of hydroxyapatite/reconstituted collagen as supports for osteoblast cell growth, Biomaterials, 20, 1931, 10.1016/S0142-9612(99)00095-2

Brodie, 2005, Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen, J. Biomed. Mater. Res. A, 73, 409, 10.1002/jbm.a.30279

Rodrigues, 2003, Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering, Biomaterials, 24, 4987, 10.1016/S0142-9612(03)00410-1

Zou, 2005, Preparation and characterization of porous beta-tricalcium phosphate/collagen composites with an integrated structure, Biomaterials, 26, 5276, 10.1016/j.biomaterials.2005.01.064

Schneiders, 2007, Effect of modification of hydroxyapatite/collagen composites with sodium citrate, phosphoserine, phosphoserine/rgd-peptide and calcium carbonate on bone remodelling, Bone, 40, 1048, 10.1016/j.bone.2006.11.019

Marouf, 1989, In vitro and in vivo studies with collagen/hydroxyapatite implants, Int. J. Oral Maxillofac. Implants, 5, 148

Brown, W.E. (1987). A new calcium phosphate, water-setting cement. Cements Res. Prog., 351–379.

Barralet, 2004, Ionic modification of calcium phosphate cement viscosity. Part II: Hypodermic injection and strength improvement of brushite cement, Biomaterials, 25, 2197, 10.1016/j.biomaterials.2003.09.085

Kumar, 2000, A review of chitin and chitosan applications, React. Funct. Polymers, 46, 1, 10.1016/S1381-5148(00)00038-9

Madihally, 1999, Porous chitosan scaffolds for tissue engineering, Biomaterials, 20, 1133, 10.1016/S0142-9612(99)00011-3

Athanasiou, 2001, Basic science of articular cartilage repair, Clin. Sports Med., 20, 223, 10.1016/S0278-5919(05)70304-5

Dornish, 2001, Standards and guidelines for biopolymers in tissue-engineered medical products, Ann. New York Acad. Sci., 944, 388, 10.1111/j.1749-6632.2001.tb03850.x

Shi, 2006, Therapeutic potential of chitosan and its derivatives in regenerative medicine, J. Surg. Res., 133, 185, 10.1016/j.jss.2005.12.013

Seeherman, 2003, A review of preclinical program development for evaluating injectable carriers for osteogenic factors, J. Bone Joint Surg., 85, 96, 10.2106/00004623-200300003-00016

Chesnutt, 2009, Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration, J. Biomed. Mater. Res. A, 88, 491, 10.1002/jbm.a.31878

Lee, 2009, Membrane of hybrid chitosan–silica xerogel for guided bone regeneration, Biomaterials, 30, 743, 10.1016/j.biomaterials.2008.10.025

Zhou, 2009, Enhanced bioactivity of bone morphogenetic protein-2 with low dose of 2-n, 6-o-sulfated chitosan in vitro and in vivo, Biomaterials, 30, 1715, 10.1016/j.biomaterials.2008.12.016

Vert, 1992, Bioresorbability and biocompatibility of aliphatic polyesters, J. Mater. Sci., 3, 432

Seal, 2001, Polymeric biomaterials for tissue and organ regeneration, Mater. Sci. Eng., 34, 147, 10.1016/S0927-796X(01)00035-3

Mano, 2004, Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: State of the art and recent developments, Compos. Sci. Technol., 64, 789, 10.1016/j.compscitech.2003.09.001

Kohn, J. (1996). Biomaterials Science: An Introduction to Materials in Medicine, Academic Press.

1999, Biomedical application of functional polymers, React. Funct. Polymers, 39, 99, 10.1016/S1381-5148(98)00054-6

Griffith, 2000, Polymeric biomaterials, Acta Mater., 48, 263, 10.1016/S1359-6454(99)00299-2

Rezwan, 2006, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, 27, 3413, 10.1016/j.biomaterials.2006.01.039

Godbey, 2002, In vitro systems for tissue engineering, Ann. New York Acad. Sci., 961, 10, 10.1111/j.1749-6632.2002.tb03041.x

Helmus, 1993, Materials selection, Cardiovasc. Pathol., 2, 53, 10.1016/1054-8807(93)90047-6

Kulkarni, 1971, Biodegradable poly (lactic acid) polymers, J. Biomed. Mater. Res., 5, 169, 10.1002/jbm.820050305

Ma, 2001, Engineering new bone tissue in vitro on highly porous poly (α-hydroxyl acids)/hydroxyapatite composite scaffolds, J. Biomed. Mater. Res., 54, 284, 10.1002/1097-4636(200102)54:2<284::AID-JBM16>3.0.CO;2-W

Vert, 1994, Biodegradation of PLA/GA polymers: Increasing complexity, Biomaterials, 15, 1209, 10.1016/0142-9612(94)90271-2

Winet, 1997, Comparative bone healing near eroding polylactide-polyglycolide implants of differing crystallinity in rabbit tibial bone chambers, J. Biomater. Sci. Polymer Ed., 8, 517, 10.1163/156856297X00425

Martin, 1996, Acidity near eroding polylactide-polyglycolide in vitro and in vivo in rabbit tibial bone chambers, Biomaterials, 17, 2373, 10.1016/S0142-9612(96)00075-0

Agrawal, 1997, Technique to control pH in vicinity of biodegrading PLA-PGA implants, J. Biomed. Mater. Res., 38, 105, 10.1002/(SICI)1097-4636(199722)38:2<105::AID-JBM4>3.0.CO;2-U

Reed, 1981, Biodegradable polymers for use in surgery—poly (glycolic)/poly (iactic acid) homo and copolymers: 2. In vitro degradation, Polymer, 22, 494, 10.1016/0032-3861(81)90168-3

Ikada, 2000, Biodegradable polyesters for medical and ecological applications, Macromol. Rapid Commun., 21, 117, 10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X

Athanasiou, 1996, Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers, Biomaterials, 17, 93, 10.1016/0142-9612(96)85754-1

McVicar, 1995, Self-reinforced polyglycolic acid membrane: A bioresorbable material for orbital floor repair. Initial clinical report, Br. J. Oral Maxillofac. Surg., 33, 220, 10.1016/0266-4356(95)90003-9

Maurus, 2004, Bioabsorbable implant material review, Oper. Tech. Sports Med., 12, 158, 10.1053/j.otsm.2004.07.015

Vasenius, 1991, Ultra-high-strength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: In vitro and in vivo study, J. Biomed. Mater. Res., 25, 1, 10.1002/jbm.820250102

Cutright, 1974, Degradation rates of polymers and copolymers of polylactic and polyglycolic acids, Oral Surg. Oral Med. Oral Pathol., 37, 142, 10.1016/0030-4220(74)90171-6

Datta, 2006, Lactic acid: Recent advances in products, processes and technologies—A review, J. Chem. Technol. Biotechnol., 81, 1119, 10.1002/jctb.1486

Garlotta, 2001, A literature review of poly (lactic acid), J. Polym. Environ., 9, 63, 10.1023/A:1020200822435

Argarate, 2014, Biodegradable bi-layered coating on polymeric orthopaedic implants for controlled release of drugs, Mater. Lett., 132, 193, 10.1016/j.matlet.2014.06.070

Tsuji, 1998, Blends of aliphatic polyesters. Ii. Hydrolysis of solution-cast blends from poly (l-lactide) and poly (e-caprolactone) in phosphate-buffered solution, J. Appl. Polym. Sci., 67, 405, 10.1002/(SICI)1097-4628(19980118)67:3<405::AID-APP3>3.0.CO;2-Q

Sinclair, 1996, The case for polylactic acid as a commodity packaging plastic, J. Macromol. Sci. A, 33, 585, 10.1080/10601329608010880

Sawai, 2002, Preparation of oriented β-form poly (l-lactic acid) by solid-state extrusion, J. Polym. Sci. B, 40, 95, 10.1002/polb.10076

Iwata, 1998, Morphology and enzymatic degradation of poly (l-lactic acid) single crystals, Macromolecules, 31, 2461, 10.1021/ma980008h

Urayama, 2002, Properties and biodegradability of polymer blends of poly (l-lactide) s with different optical purity of the lactate units, Macromol. Mater. Eng., 287, 116, 10.1002/1439-2054(20020201)287:2<116::AID-MAME116>3.0.CO;2-Z

Andersson, 2010, Polylactide stereocomplexation leads to higher hydrolytic stability but more acidic hydrolysis product pattern, Biomacromolecules, 11, 1067, 10.1021/bm100029t

Sabir, 2009, A review on biodegradable polymeric materials for bone tissue engineering applications, J. Mater. Sci., 44, 5713, 10.1007/s10853-009-3770-7

Sherwood, 2002, A three-dimensional osteochondral composite scaffold for articular cartilage repair, Biomaterials, 23, 4739, 10.1016/S0142-9612(02)00223-5

Grandfils, 1992, Preparation of poly (D, L) lactide microspheres by emulsion–solvent evaporation, and their clinical applications as a convenient embolic material, J. Biomed. Mater. Res., 26, 467, 10.1002/jbm.820260405

Schwartz, 1995, Calvarial bone repair with porous d, l-polylactide, Otolaryngology, 112, 707

Sheridan, 2000, Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery, J. Controll. Release, 64, 91, 10.1016/S0168-3659(99)00138-8

Zhang, 1999, Porous poly (l-lactic acid)/apatite composites created by biomimetic process, J. Biomed. Mater. Res., 45, 285, 10.1002/(SICI)1097-4636(19990615)45:4<285::AID-JBM2>3.0.CO;2-2

Mikos, 1994, Preparation and characterization of poly (l-lactic acid) foams, Polymer, 35, 1068, 10.1016/0032-3861(94)90953-9

Schugens, 1996, Polylactide macroporous biodegradable implants for cell transplantation. II. Preparation of polylactide foams by liquid-liquid phase separation, J. Biomed. Mater. Res., 30, 449, 10.1002/(SICI)1097-4636(199604)30:4<449::AID-JBM3>3.0.CO;2-P

Wei, 2006, Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres, J. Biomed. Mater. Res. A, 78, 306, 10.1002/jbm.a.30704

Mathieu, 2006, Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering, Biomaterials, 27, 905, 10.1016/j.biomaterials.2005.07.015

Jie, 2004, Tissue engineering scaffold material of nano-apatite crystals and polyamide composite, Eur. Polym. J., 40, 509, 10.1016/j.eurpolymj.2003.10.028

Wei, 2007, Preparation and characterization of a nano apatite/polyamide 6 bioactive composite, Compos. B, 38, 301, 10.1016/j.compositesb.2006.05.006

Flahiff, 1996, Analysis of a biodegradable composite for bone healing, J. Biomed. Mater. Res., 32, 419, 10.1002/(SICI)1097-4636(199611)32:3<419::AID-JBM15>3.0.CO;2-B

Ramay, 2004, Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering, Biomaterials, 25, 5171, 10.1016/j.biomaterials.2003.12.023

Gunatillake, 2006, Recent developments in biodegradable synthetic polymers, Biotechnol. Annu. Rev., 12, 301, 10.1016/S1387-2656(06)12009-8

Hollinger, 1983, Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA), J. Biomed. Mater. Res., 17, 71, 10.1002/jbm.820170107

Nelson, 1977, Evaluation and comparisons of biodegradable substances as osteogenic agents, Oral Surg. Oral Med. Oral Pathol., 43, 836, 10.1016/0030-4220(77)90075-5

Gunatillake, 2003, Biodegradable synthetic polymers for tissue engineering, Eur. Cell Mater., 5, 1, 10.22203/eCM.v005a01

Lee, 2002, Interaction of human chondrocytes and NIH/3T3 fibroblasts on chloric acid-treated biodegradable polymer surfaces, J. Biomater. Sci. Polym. Ed., 13, 197, 10.1163/156856202317414375

Stolt, 2002, Properties of lactic acid based polymers and their correlation with composition, Prog. Polym. Sci., 27, 1123, 10.1016/S0079-6700(02)00012-6

Murphy, 2000, Growth of continuous bonelike mineral within porous poly (lactide-co-glycolide) scaffolds in vitro, J. Biomed. Mater. Res., 50, 50, 10.1002/(SICI)1097-4636(200004)50:1<50::AID-JBM8>3.0.CO;2-F

Reinstorf, 2002, Influence of osteocalcin and collagen I on the mechanical and biological properties of biocement D, Biomol. Eng., 19, 227, 10.1016/S1389-0344(02)00036-9

Friedman, 1998, Bonesource™ hydroxyapatite cement: A novel biomaterial for craniofacial skeletal tissue engineering and reconstruction, J. Biomed. Mater. Res., 43, 428, 10.1002/(SICI)1097-4636(199824)43:4<428::AID-JBM10>3.0.CO;2-0

Huang, 2004, In vitro assessment of the biological response to nano-sized hydroxyapatite, J. Mater. Sci., 15, 441

Pezzatini, 2006, The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions, J. Biomed. Mater. Res. A, 76, 656, 10.1002/jbm.a.30524

Zimmermann, 1991, Patterns of mineralization in vitro, Cell Tissue Res., 263, 483, 10.1007/BF00327281

Ciapetti, 2003, Osteoblast growth and function in porous poly ε-caprolactone matrices for bone repair: A preliminary study, Biomaterials, 24, 3815, 10.1016/S0142-9612(03)00263-1

Yuan, 1999, A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics, Biomaterials, 20, 1799, 10.1016/S0142-9612(99)00075-7

Kuboki, 2001, Geometry of carriers controlling phenotypic expression in bmp-induced osteogenesis and chondrogenesis, J. Bone Joint Surg., 83, S105, 10.2106/00004623-200100002-00005

Tamai, 2005, A new biotechnology for articular cartilage repair: Subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2), Osteoarthr. Cartil., 13, 405, 10.1016/j.joca.2004.12.014

Zhang, 2009, In vivo mineralization and osteogenesis of nanocomposite scaffold of poly (lactide-co-glycolide) and hydroxyapatite surface-grafted with poly (l-lactide), Biomaterials, 30, 58, 10.1016/j.biomaterials.2008.08.041

Labet, 2009, Synthesis of polycaprolactone: A review, Chem. Soc. Rev., 38, 3484, 10.1039/b820162p

Kweon, 2003, A novel degradable polycaprolactone networks for tissue engineering, Biomaterials, 24, 801, 10.1016/S0142-9612(02)00370-8

Engelberg, 1991, Physico-mechanical properties of degradable polymers used in medical applications: A comparative study, Biomaterials, 12, 292, 10.1016/0142-9612(91)90037-B

Coombes, 2004, Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery, Biomaterials, 25, 315, 10.1016/S0142-9612(03)00535-0

Agrawal, 2001, Biodegradable polymeric scaffolds for musculoskeletal tissue engineering, J. Biomed. Mater. Res., 55, 141, 10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-J

Mondrinos, 2006, Porogen-based solid freeform fabrication of polycaprolactone–calcium phosphate scaffolds for tissue engineering, Biomaterials, 27, 4399, 10.1016/j.biomaterials.2006.03.049

Ramakrishna, 2001, Biomedical applications of polymer-composite materials: A review, Compos. Sci. Technol., 61, 1189, 10.1016/S0266-3538(00)00241-4

Benedetti, 1993, Biocompatibility and biodegradation of different hyaluronan derivatives (Hyaff) implanted in rats, Biomaterials, 14, 1154, 10.1016/0142-9612(93)90160-4

Giordano, 2006, Chemical-physical characterization and in vitro preliminary biological assessment of hyaluronic acid benzyl ester-hydroxyapatite composite, J. Biomater. Appl., 20, 237, 10.1177/0885328206051811

Mori, 2004, Hyaluronan-based biomaterials in tissue engineering, Acta Histochem. Cytochem., 37, 1, 10.1267/ahc.37.1

Sanginario, 2006, Biodegradable and semi-biodegradable composite hydrogels as bone substitutes: Morphology and mechanical characterization, J. Mater. Sci., 17, 447

Hollinger, 1986, Biodegradable bone repair materials synthetic polymers and ceramics, Clin. Orthop. Relat. Res., 207, 290, 10.1097/00003086-198606000-00046

Yang, 2002, Poly (p-dioxanone) and its copolymers, J. Macromol. Sci. Part C, 42, 373, 10.1081/MC-120006453

Pezzin, 2003, Poly (para-dioxanone) and poly (l-lactic acid) blends: Thermal, mechanical, and morphological properties, J. Appl. Polymer Sci., 88, 2744, 10.1002/app.11984

Bai, 2009, Miscibility, morphology and thermal properties of poly (para-dioxanone)/poly (d, l-lactide) blends, Polymer Int., 58, 183, 10.1002/pi.2512

Pietrzak, 2000, Principles of development and use of absorbable internal fixation, Tissue Eng., 6, 425, 10.1089/107632700418128

Roller, M.B., Li, Y., and Yuan, J.J. (2009). Implantable Medical Devices and Methods for Making Same. (7,572,298), U.S. Patent.

Shi, D. (2006). Introduction to Biomaterials, World Scientific.

Bai, 2009, In vitro hydrolytic degradation of poly (para-dioxanone) with high molecular weight, J. Polym. Res., 16, 471, 10.1007/s10965-008-9250-y

Bai, 2010, In vitro hydrolytic degradation of poly (para-dioxanone)/poly (d, l-lactide) blends, Mater. Chem. Phys., 122, 79, 10.1016/j.matchemphys.2010.02.064

Ward, I.M., and Sweeney, J. (2012). Mechanical Properties of Solid Polymers, John Wiley & Sons.

Schimming, 2004, Tissue-engineered bone for maxillary sinus augmentation, J. Oral Maxillofac. Surg., 62, 724, 10.1016/j.joms.2004.01.009

Hutmacher, 2000, Scaffolds in tissue engineering bone and cartilage, Biomaterials, 21, 2529, 10.1016/S0142-9612(00)00121-6

Mallick, P.K. (2010). Fiber-Reinforced Composites: Materials, Manufacturing, and Design, CRC Press.

Mehboob, 2014, Application of composites to orthopedic prostheses for effective bone healing: A review, Compos. Struct., 118, 328, 10.1016/j.compstruct.2014.07.052

Andriano, 1992, Biocompatibility and mechanical properties of a totally absorbable composite material for orthopaedic fixation devices, J. Appl. Biomater., 3, 197, 10.1002/jab.770030306

Harper, 2012, Finite element modelling of the flexural performance of resorbable phosphate glass fibre reinforced pla composite bone plates, J. Mech. Behav. Biomed. Mater., 15, 13, 10.1016/j.jmbbm.2012.07.002

Parsons, 2009, Phosphate glass fibre composites for bone repair, J. Bionic Eng., 6, 318, 10.1016/S1672-6529(08)60132-8

Haque, 2010, Interfacial properties of phosphate glass fibres/PLA composites: Effect of the end functionalities of oligomeric pla coupling agents, Compos. Sci. Technol., 70, 1854, 10.1016/j.compscitech.2010.06.012

Ahmed, 2011, Composites for bone repair: Phosphate glass fibre reinforced PLA with varying fibre architecture, J. Mater. Sci., 22, 1825

Gupta, 2005, Characterization of a novel bioactive composite using advanced X-ray computed tomography, Compos. Struct., 71, 423, 10.1016/j.compstruct.2005.09.023

Cannillo, 2010, Production of bioglass® 45s5-polycaprolactone composite scaffolds via salt-leaching, Compos. Struct., 92, 1823, 10.1016/j.compstruct.2010.01.017

Ahmed, 2008, Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite, Acta Biomater., 4, 1307, 10.1016/j.actbio.2008.03.018

Felfel, 2012, Investigation of crystallinity, molecular weight change, and mechanical properties of PLA/PBG bioresorbable composites as bone fracture fixation plates, J. Biomater. Appl., 26, 765, 10.1177/0885328210384532

Ahmed, 2009, Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite, J. Biomed. Mater. Res. B, 89, 18, 10.1002/jbm.b.31182

Felfel, 2013, Bioresorbable screws reinforced with phosphate glass fibre: Manufacturing and mechanical property characterisation, J. Mech. Behav. Biomed. Mater., 17, 76, 10.1016/j.jmbbm.2012.08.001

Felfel, 2013, Bioresorbable composite screws manufactured via forging process: Pull-out, shear, flexural and degradation characteristics, J. Mech. Behav. Biomed. Mater., 18, 108, 10.1016/j.jmbbm.2012.11.009

Felfel, 2012, Initial mechanical properties of phosphate-glass fibre-reinforced rods for use as resorbable intramedullary nails, J. Mater. Sci., 47, 4884, 10.1007/s10853-012-6355-9

Hasan, 2012, Investigating the use of coupling agents to improve the interfacial properties between a resorbable phosphate glass and polylactic acid matrix, J. Biomater. Appl., 28, 354, 10.1177/0885328212453634

Felfel, 2011, In vitro degradation, flexural, compressive and shear properties of fully bioresorbable composite rods, J. Mech. Behav. Biomed. Mater., 4, 1462, 10.1016/j.jmbbm.2011.05.016

Hench, 2006, The story of bioglass®, J. Mater. Sci., 17, 967

Khurshid, S.Z. (2014). Dental Biomaterials (Principle and Its Application), Paramount Publishing Enterprise. [2nd ed.].

Sheikh, 2015, Chelate setting of alkali ion substituted calcium phosphates, Ceram. Int., 41, 10010, 10.1016/j.ceramint.2015.04.083

Lu, 2002, The biodegradation mechanism of calcium phosphate biomaterials in bone, J. Biomed. Mater. Res., 63, 408, 10.1002/jbm.10259

Radin, 1997, Calcium phosphate ceramic coatings as carriers of vancomycin, Biomaterials, 18, 777, 10.1016/S0142-9612(96)00190-1

Ogose, 2005, Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors, J. Biomed. Mater. Res. Part B, 72, 94, 10.1002/jbm.b.30136

Daculsi, 1990, Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics, Calcif. Tissue Int., 46, 20, 10.1007/BF02555820

Shigaku, 2005, Beta-tricalcium phosphate as a bone graft substitute, Jikeikai Med. J., 52, 47

Hak, 2007, The use of osteoconductive bone graft substitutes in orthopaedic trauma, J. Am. Acad. Orthop. Surg., 15, 525, 10.5435/00124635-200709000-00003

Cameron, 1977, Evaluation of a biodegradable ceramic, J. Biomed. Mater. Res., 11, 179, 10.1002/jbm.820110204

Skorokhod, 2008, Pressing and sintering of nanosized hydroxyapatite powders, Powder Metall. Metal Ceram., 47, 518, 10.1007/s11106-008-9053-z

Erbe, 2001, Potential of an ultraporous β-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft, Eur. Spine J., 10, S141, 10.1007/s005860100287

Ryu, 2004, Novel bioactive and biodegradable glass ceramics with high mechanical strength in the cao-SiO2-B2O3 system, J. Biomed. Mater. Res. A, 68, 79, 10.1002/jbm.a.20029

Santos, M., Valerio, P., Goes, A., Leite, M., Heneine, L., and Mansur, H. (2007). Biocompatibility evaluation of hydroxyapatite/collagen nanocomposites doped with Zn2+. Biomed. Mater., 2.

Irigaray, J., Oudadesse, H., Jallot, E., Brun, V., Weber, G., and Frayssinet, P. (1999). Materials in Clinical Applications, World Ceramics Congress and Forum on New Materials.

Nurit, 2002, Ph-metric study of the setting reaction of monocalcium phosphate monohydrate/calcium oxide-based cements, J. Mater. Sci. Mater. Med., 13, 1007, 10.1023/A:1020367900773

Desai, 2007, A self-setting, monetite (CaHPO4) cement for skeletal repair, Adv. Bioceram. Biocompos. II, 27, 61

Tamimi, 2012, The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: Brushite vs. Monetite, Acta Biomater., 8, 3161, 10.1016/j.actbio.2012.04.025

Bohner, 1999, Effect of several additives and their admixtures on the physico-chemical properties of a calcium phosphate cement, J. Mater. Sci. Mater. Med., 11, 111, 10.1023/A:1008997118576

Pina, 2010, Newly developed Sr-substituted alpha-TCP bone cements, Acta Biomater., 6, 928, 10.1016/j.actbio.2009.09.001

Lilley, 2005, Cement from nanocrystalline hydroxyapatite: Effect of sulphate ions, Bioceramics, 284–286, 137

Marino, 2007, Advantages of using glycolic acid as a retardant in a brushite forming cement, J. Biomed. Mater. Res. Part B Appl. Biomater., 83, 571, 10.1002/jbm.b.30830

Tamimi, 2008, Bone regeneration in rabbit calvaria with novel monetite granules, J. Biomed. Mater. Res. A, 87, 980, 10.1002/jbm.a.31842

Aberg, 2010, Premixed acidic calcium phosphate cement: Characterization of strength and microstructure, J. Biomed. Mater. Res. B, 93, 436, 10.1002/jbm.b.31600

Ryf, 2009, A new injectable brushite cement: First results in distal radius and proximal tibia fractures, Eur. J. Trauma Emerg. Surg., 35, 389, 10.1007/s00068-009-8165-6

Frazer, 2005, PMMA: An essential material in medicine and dentistry, J. Long Term Effects Med. Implants, 15, 629, 10.1615/JLongTermEffMedImplants.v15.i6.60

Horowitz, 1988, Effects of polymethylmethacrylate exposure upon macrophages, J. Orthop. Res., 6, 827, 10.1002/jor.1100060606

Nimb, 1994, Effects of polymerization heat and monomers from acrylic cement on canine bone, Acta Orthop., 65, 20, 10.3109/17453679408993711

Kalteis, 2003, Acute tissue toxicity of pmma bone cements, Z. Orthop. Ihre Grenzgeb., 142, 666, 10.1055/s-2004-832317

Seal, C., Vince, K., and Hodgson, M. (2009). Biodegradable Surgical Implants Based on Magnesium Alloys—A Review of Current Research, IOP Publishing.

Kubota, 1999, Review processing and mechanical properties of fine-grained magnesium alloys, J. Mater. Sci., 34, 2255, 10.1023/A:1004561205627

Brar, 2009, Magnesium as a biodegradable and bioabsorbable material for medical implants, JOM, 61, 31, 10.1007/s11837-009-0129-0

Mordike, 2001, Magnesium: Properties—applications—potential, Mater. Sci. Eng., 302, 37, 10.1016/S0921-5093(00)01351-4

Towle, 1993, Comparison of compressive and tensile properties of magnesium based metal matrix composites, Mater. Sci. Technol., 9, 35, 10.1179/mst.1993.9.1.35

Lin, 2013, The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating, Acta Biomater., 9, 8631, 10.1016/j.actbio.2012.12.016

Gu, 2011, Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy, Acta Biomater., 7, 1880, 10.1016/j.actbio.2010.11.034

Song, 2007, Control of biodegradation of biocompatable magnesium alloys, Corros. Sci., 49, 1696, 10.1016/j.corsci.2007.01.001

Geng, 2009, The preparation, cytocompatibility, and in vitro biodegradation study of pure β-TCP on magnesium, J. Mater. Sci., 20, 1149

Xu, 2009, Phosphating treatment and corrosion properties of Mg-Mn-Zn alloy for biomedical application, J. Mater. Sci., 20, 859

Wen, 2009, Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications, Appl. Surf. Sci., 255, 6433, 10.1016/j.apsusc.2008.09.078

Habibovic, 2002, Biomimetic hydroxyapatite coating on metal implants, J. Am. Ceram. Soc., 85, 517, 10.1111/j.1151-2916.2002.tb00126.x

Wan, 2008, Preparation and characterization of a new biomedical magnesium–calcium alloy, Mater. Des., 29, 2034, 10.1016/j.matdes.2008.04.017

Gu, 2009, A study on alkaline heat treated Mg–Ca alloy for the control of the biocorrosion rate, Acta Biomater., 5, 2790, 10.1016/j.actbio.2009.01.048

Gu, 2009, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, 30, 484, 10.1016/j.biomaterials.2008.10.021

Li, 2008, The development of binary Mg-Ca alloys for use as biodegradable materials within bone, Biomaterials, 29, 1329, 10.1016/j.biomaterials.2007.12.021

Zhang, 2010, Research on an Mg-Zn alloy as a degradable biomaterial, Acta Biomater., 6, 626, 10.1016/j.actbio.2009.06.028

Boehlert, 2006, The microstructure, tensile properties, and creep behavior of Mg-Zn alloys containing 0–4.4 wt. % Zn, Mater. Sci. Eng., 417, 315, 10.1016/j.msea.2005.11.006

Gooptu, 2008, Polymers and inflammation: Disease mechanisms of the serpinopathies, J. Exp. Med., 205, 1529, 10.1084/jem.20072080

Puoci, F. (2015). Advanced Polymers in Medicine, Springer.

Lincoff, 1996, Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries, Circulation, 94, 1690, 10.1161/01.CIR.94.7.1690

Anderson, 1988, Inflammatory response to implants, ASAIO J., 34, 101, 10.1097/00002480-198804000-00005

Rokkanen, 1996, Absorbable devices in the fixation of fractures, J. Trauma Acute Care Surg., 40, 123S, 10.1097/00005373-199603001-00027

Bostman, 1991, Osteolytic changes accompanying degradation of absorbable fracture fixation implants, J. Bone Joint Surg. Br. Vol., 73, 679, 10.1302/0301-620X.73B4.1649195

1992, Intense granulomatous inflammatory lesions associated with absorbable internal fixation devices made of polyglycolide in ankle fractures, Clin. Orthop. Relat. Res., 278, 193

Chaignaud, B.E., Langer, R., and Vacanti, J.P. (1997). Synthetic Biodegradable Polymer Scaffolds, Springer.

Naughton, 1995, Emerging developments in tissue engineering and cell technology, Tissue Eng., 1, 211, 10.1089/ten.1995.1.211

Athanasiou, 1993, Biodegradable carriers of TGF-b in rabbit osteochondral defects, Trans. Orthop. Res. Soc., 18, 288

Vacanti, 1999, Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation, Lancet, 354, S32, 10.1016/S0140-6736(99)90247-7

Agrawal, C., Niederauer, G., Micallef, D., and Athanasiou, K. (1995). Encyclopedic Handbook of Biomaterials and Bioengineering, Marcel Dekker.

Bajpai, P. (1983). Biodegradable scaffolds in orthopedic, oral and maxillofacial surgery. Biomater. Reconstruct. Surg., 312–328.

Athanasiou, 1998, Orthopaedic applications for pla-pga biodegradable polymers, Arthroscopy, 14, 726, 10.1016/S0749-8063(98)70099-4

Jones, 2002, Two-year follow-up of meniscal repair using a bioabsorbable arrow, Arthroscopy, 18, 64, 10.1053/jars.2002.25343

Suganuma, 1993, Biological response of intramedullary bone to poly-l-lactic acid, J. Appl. Biomater., 4, 13, 10.1002/jab.770040103

Athanasiou, K. (1996, January 29–31). Biodegradable Scaffolds for Use in Orthopaedic Tissue Engineering. Proceedings of the 1996 Fifteenth Southern Biomedical Engineering Conference, Dayton, OH, USA.

Hollinger, 1992, Bone regeneration materials for the mandibular and craniofacial complex, Cell Mater., 2, 143

Hutmacher, 2001, A tissue engineered cell-occlusive device for hard tissue regeneration—A preliminary report, Int. J. Periodontics Restor. Dent., 21, 49

Shikinami, 1999, Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics, Biomaterials, 20, 859, 10.1016/S0142-9612(98)00241-5

Hutmacher, D., Kirsch, A., Ackermann, K., and Huerzeler, M. (1998). Biological Matrices and Tissue Reconstruction, Springer.

West, J., and Hubbell, J. (1986). Bioactive Polymers, Springer.

Gorzelanny, 2010, Human macrophage activation triggered by chitotriosidase-mediated chitin and chitosan degradation, Biomaterials, 31, 8556, 10.1016/j.biomaterials.2010.07.100

Apelt, 2004, In vivo behavior of three different injectable hydraulic calcium phosphate cements, Biomaterials, 25, 1439, 10.1016/j.biomaterials.2003.08.073

Lu, 1999, Histological and biomechanical studies of two bone colonizable cements in rabbits, Bone, 25, 41S, 10.1016/S8756-3282(99)00131-3

Frayssinet, 1998, Osteointegration of differents kinds of calcium phosphate biomaterials: Ceramics and hydraulic cements, Morphologie, 82, 3

Constantz, 1998, Histological, chemical, and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites, J. Biomed. Mater. Res., 43, 451, 10.1002/(SICI)1097-4636(199824)43:4<451::AID-JBM13>3.0.CO;2-Q

Kuemmerle, 2005, Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty—An experimental study in sheep, J. Cranio Maxillofac. Surg., 33, 37, 10.1016/j.jcms.2004.09.002

Grover, 2003, In vitro ageing of brushite calcium phosphate cement, Biomaterials, 24, 4133, 10.1016/S0142-9612(03)00293-X

Pioletti, 2000, The effects of calcium phosphate cement particles on osteoblast functions, Biomaterials, 21, 1103, 10.1016/S0142-9612(99)00250-1

Meijer, 2008, Cell based bone tissue engineering in jaw defects, Biomaterials, 29, 3053, 10.1016/j.biomaterials.2008.03.012

Bacabac, 2005, Mechanobiology of bone tissue, Pathol. Biol., 53, 576, 10.1016/j.patbio.2004.12.005

Kronenthal, R.L. (1975). Polymers in Medicine and Surgery, Springer.

Sheikh, Z., Zhang, Y.L., Grover, L., Merle, G., Tamimi, F., and Barralet, J. (2015). In vitro degradation and in vivo resorption of dicalcium phosphate cement based grafts. Acta Biomater.

Giocondi, 2010, Molecular mechanisms of crystallization impacting calcium phosphate cements, Philos. Trans. R. Soc. Lond. A, 368, 1937

Oberle, 2005, Investigation about the clinical use of brushite-and hydroxylapatite-cement in sheep, Schweizer Archiv Tierheilkunde, 147, 482, 10.1024/0036-7281.147.11.482

Frayssinet, 1998, Short-term implantation effects of a dcpd-based calcium phosphate cement, Biomaterials, 19, 971, 10.1016/S0142-9612(97)00163-4

Grossardt, 2010, Passive and active in vitro resorption of calcium and magnesium phosphate cements by osteoclastic cells, Tissue Eng. Part A, 16, 3687, 10.1089/ten.tea.2010.0281

Grover, 2006, Biologically mediated resorption of brushite cement in vitro, Biomaterials, 27, 2178, 10.1016/j.biomaterials.2005.11.012

Ohura, 1996, Resorption of, and bone formation from, new beta-tricalcium phosphate-monocalcium phosphate cements: An in vivo study, J. Biomed. Mater. Res., 30, 193, 10.1002/(SICI)1097-4636(199602)30:2<193::AID-JBM9>3.0.CO;2-M

Ikenaga, 1998, Biomechanical characterization of a biodegradable calcium phosphate hydraulic cement: A comparison with porous biphasic calcium phosphate ceramics, J. Biomed. Mater. Res., 40, 139, 10.1002/(SICI)1097-4636(199804)40:1<139::AID-JBM16>3.0.CO;2-J

Bohner, 2003, Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep, Biomaterials, 24, 3463, 10.1016/S0142-9612(03)00234-5

Penel, 2000, Raman spectrometry applied to calcified tissue and calcium-phosphorus biomaterials, Bull. Group. Int. Rech. Sci. Stomatol. Odontol., 42, 55

Bohner, 2000, In vitro aging of a calcium phosphate cement, J. Mater. Sci. Mater. Med., 11, 155, 10.1023/A:1008927624493

Jiang, 2009, Biomimetically triggered inorganic crystal transformation by biomolecules: A new understanding of biomineralization, J. Phys. Chem. B, 113, 10838, 10.1021/jp904633f

Flautre, 2003, Influence of polymeric additives on the biological properties of brushite cements: An experimental study in rabbit, J. Biomed. Mater. Res. A, 66, 214, 10.1002/jbm.a.10539

Tamimi, 2006, Bone augmentation in rabbit calvariae: Comparative study between bio-oss (r) and a novel beta-TCP/DCPD granulate, J. Clin. Periodontol., 33, 922, 10.1111/j.1600-051X.2006.01004.x

Klammert, 2009, Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing, Acta Biomater., 5, 727, 10.1016/j.actbio.2008.08.019

Klammert, 2010, Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement, Acta Biomater., 6, 1529, 10.1016/j.actbio.2009.10.021

Hacking, 2008, The use of rankl-coated brushite cement to stimulate bone remodelling, Biomaterials, 29, 3253, 10.1016/j.biomaterials.2008.03.035

Sanchez, 2010, Local controlled release of VEGF and PDGF from a combined brushite-chitosan system enhances bone regeneration, J. Controll. Release, 143, 45, 10.1016/j.jconrel.2009.11.026

Silva, 2010, Rank/Rankl/opg: Literature review, Acta Reumatol. Port., 36, 209

Sachlos, 2003, Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds, Eur. Cell Mater., 5, 39, 10.22203/eCM.v005a03

Guo, 2015, Functionalized scaffolds to enhance tissue regeneration, Regen. Biomater., 2, 47, 10.1093/rb/rbu016

Young, J., Teumer, J., Kemp, P., and Parenteau, N. (1997). Approaches to Transplanting Engineered Cells and Tissues, RG Landes Co.

Kokubo, T. (2008). Bioceramics and Their Clinical Applications, Elsevier.

Thompson, 1996, The effects of dynamic compressive loading on biodegradable implants of 50–50% polylactic acid-polyglycolic acid, Tissue Eng., 2, 61, 10.1089/ten.1996.2.61

Ingber, 1997, Tensegrity: The architectural basis of cellular mechanotransduction, Annu. Rev. Physiol., 59, 575, 10.1146/annurev.physiol.59.1.575

Chen, 1997, Geometric control of cell life and death, Science, 276, 1425, 10.1126/science.276.5317.1425

Zhong, 2006, An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture, J. Biomed. Mater. Res. Part A, 79, 456, 10.1002/jbm.a.30870

Xu, 2004, Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering, Biomaterials, 25, 877, 10.1016/S0142-9612(03)00593-3

Li, 2004, Electrospinning of nanofibers: Reinventing the wheel?, Adv. Mater., 16, 1151, 10.1002/adma.200400719

Yang, 2002, The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques, Tissue Eng., 8, 1, 10.1089/107632702753503009

Sobral, 2011, Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency, Acta Biomater., 7, 1009, 10.1016/j.actbio.2010.11.003

Moroni, 2006, 3D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties, Biomaterials, 27, 974, 10.1016/j.biomaterials.2005.07.023

Preechawong, 2005, Preparation and characterization of starch/poly (l-lactic acid) hybrid foams, Carbohydr. Polymers, 59, 329, 10.1016/j.carbpol.2004.10.003

Karageorgiou, 2005, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 26, 5474, 10.1016/j.biomaterials.2005.02.002

Vander, A., Sherman, J., and Luciano, D. (1980). Humanphysiology: The Mechanisms of Body Function, William C Brown Pub.

Hokugo, 2004, Prefabrication of vascularized bone graft using guided bone regeneration, Tissue Eng., 10, 978, 10.1089/ten.2004.10.978

Ren, 2008, A novel strategy for prefabrication of large and axially vascularized tissue engineered bone by using an arteriovenous loop, Med. Hypotheses, 71, 737, 10.1016/j.mehy.2008.06.032

Freed, 1998, Chondrogenesis in a cell-polymer-bioreactor system, Exp. Cell Res., 240, 58, 10.1006/excr.1998.4010

Chen, 2003, Polymeric growth factor delivery strategies for tissue engineering, Pharm. Res., 20, 1103, 10.1023/A:1025034925152

Engin, 1999, Manufacture of macroporous calcium hydroxyapatite bioceramics, J. Eur. Ceram. Soc., 19, 2569, 10.1016/S0955-2219(99)00131-4

Cama, 2009, Preparation and properties of macroporous brushite bone cements, Acta Biomater., 5, 2161, 10.1016/j.actbio.2009.02.012

Habibovic, 2008, Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants, Biomaterials, 29, 944, 10.1016/j.biomaterials.2007.10.023