Biodegradable Duo-functional Active Film: Antioxidant and Antimicrobial Actions for the Conservation of Beef
Tóm tắt
The mechanical properties as well antioxidant/antimicrobial effects of active packaging for beef produced from cornstarch, linear low-density polyethylene (LLDPE), and citric acid (CA) were evaluated. The addition of starch in the blends influenced the mechanical characteristics of the films, with reduced ultimate tensile strength (TS), elongation at break (E), and modulus of elasticity (ME) parameters for films with a higher starch concentration. Conversely, greater solubility and degree of swelling of the films were observed when the starch content was increased, with gradual release of the CA from the packaging to the product. Characterization by thermogravimetric analysis and Fourier transform infrared spectroscopy showed that the incorporation of starch affected the thermal stability and chemical composition of the blends. The "in vitro" biodegradability was shown by gravimetric evaluation, with weight loss and decrease of TS of the films. Meat samples packed with the active films and stored under refrigeration showed a significant reduction of the levels of thiobarbituric acid reactive substances (TBARSs) and a decrease of about 1 log in the total bacterial count in the beef, compared with the control film (nonactive). The color was also affected, with an increase in the a* (redness) parameter, which characterizes the desirable red color in beef. The biodegradable packaging of starch/LLDPE incorporating CA prevented oxidative and microbial processes, besides providing a more desirable color to the meat during storage. In this study, we hypothesized that the effects were related to CA presence.
Tài liệu tham khảo
Aggarwal, P., & Dollimore, D. (1997). The combustion of starch, cellulose and cationically modified products of these compounds investigated using thermal analysis. Thermochimica Acta, 291, 65–72.
Ahmadi, R., Kalbasi-Ashtari, A., Oromiehie, A., Yarmand, M. S., & Jahandideh, F. (2012). Development and characterization of a novel biodegradable edible film obtained from psyllium seed (Plantago ovata Forsk). Journal of Food Engineering, 109(4), 745–751.
American Society Standard Testing and Materials (ASTM) (1996a). Standard specification for standard atmosphere for conditioning and testing flexible barriers materials—E171-94. Philadelphia.
American Society Standard Testing and Materials (ASTM) (1996b). Standard practice for conditioning plastics and electrical insulating materials form testing—D618-95. Philadelphia.
Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science and Emerging Technologies, 3, 113–126.
Basch, C. Y., Jagus, R. J., & Flores, S. K. (2013). Physical and antimicrobial properties of tapioca starch-HPMC edible films incorporated with nisin and/or potassium sorbate. process Technology, 6(9), 2419–2428.
Bierhalz, A. C. K., da Silva, M. A., & Kieckbusch, T. G. (2012). Natamycin release from alginate/pectin films for food packaging applications. Journal of Food Engineering, 110, 18–25.
Bodaghi, H., Mostofi, Y., Oromiehie, A., Zamani, Z., Ghanbarzadeh, B., Costa, C., et al. (2013). Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. LWT – Food Science and Technology, 50(2), 702–706.
Bolumar, T., Andersen, M. L., & Orlien, V. (2011). Antioxidant active packaging for chicken meat processed by high pressure treatment. Food Chemistry, 129, 1406–1412.
Bonhomme, S., Cuer, A., Delort, A.-M., Lemaire, J., Sancelme, M., & Scott, G. (2003). Environmental biodegradation of polyethylene. Polymer Degradation and Stability, 81, 441–452.
Brito, G. F., Agrawal, P., Araújo, E. M., & Mélo, T. J. A. (2011). Biopolímeros, polímeros biodegradáveis e polímeros verdes. Revista Eletrônica de Materiais e Processos, 6, 127–139.
Buckley, D. J., Morrissey, P. A., & Gray, J. I. (1995). Influence of dietary vitamin E on the oxidative stability and quality of pig meat. Journal of Animal Science, 73, 3122–3130.
Carvalho, A. J. F., Curvelo, A. A. S., & Agnelli, J. A. M. (2001). A first insight on composites of thermoplastic starch and kaolin. Carbohydrate Polymers, 45, 189–194.
Cercléa, C., Sarazinb, P., & Favisa, B. D. (2013). High performance polyethylene/thermoplastic starch blends through controlled emulsification phenomena. Carbohydrate Polymers, 92, 138–148.
Chan, W. K. M., Hakkarainen, K., Faustman, C., Schaeffer, D. M., Scheller, K. K., & Liu, Q. (1995). Color stability and microbial growth relationships in beef as affected by endogenous α-tocopherol. Journal of Food Science, 60, 966–971.
Cornforth, D. P., & Jayasingh, P. (2004). Chemical and physical characteristics of meat: colour and pigment. Amsterdam: Elsevier. In Encyclopedia of meat sciences.
Damodaran, S., Parkin, K. L., & Fennema, O. R. (2010). Química de alimentos de fennema (4th ed.). Porto Alegre: Artmed.
Dias, F. S., Ávila, C. L. S., & Schwan, R. F. (2011). In situ inhibition of Escherichia coli isolated from fresh pork sausage by organic acids. Journal of Food Science, 76(9), 605–610.
Dikobe, D. G., & Luyt, A. S. (2010). Comparative study of the morphology and properties of PP/LLDPE/wood powder and MAPP/LLDPE/wood powder polymer blend composites. Polymer Letters, 4(11), 729–741.
Doležalová, M., Molatová, Z., Buñka, F., Brezina, P., & Marounek, M. (2010). Effect of organic acids on growth of chilled chicken skin microflora. Journal of Food Safety, 30, 353–365.
Downes, F. P., & Ito, K. (Eds.). (2001). Compendium for the microbiological examination of foods (4th ed.). Washington: American Public Health Association (APHA).
El-Naggara, M. M. A., & Faragb, M. G. (2010). Physical and biological treatments of polyethylene-rice starch plastic films. Journal of Hazardous Materials, 176, 878–883.
El-Shafei, H. A., El-Nasser, N. H. A., Kansoh, A. L., & Ali, A. M. (1998). Biodegradation of disposable polyethylene by fungi and Streptomyces species. Polymer Degradation and Stability, 62, 361–365.
Espitia, P. J. P., Soares, N. F. F., Coimbra, J. S. R., Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and Bioprocess Technology, 5(5), 1447–1464.
Faustman, C., & Cassens, R. G. (1990). The biochemical basis for discoloration in fresh meat: a review. Journal of Muscle Foods, 1, 217–243.
Food and Drug Administration (FDA) (2013). Code of federal regulations. Part 184—direct food substances affirmed as generally recognized as safe sec. 184.1033: citric acid. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1033. Accessed 23 July 2013.
Foralosso, F. B., Fronza, N., dos Santos, J. H., Capeletti, L. B., & Quadri, M. G. N. (2013). The use of duo-functional PVC film for conservation of minimally processed apples. Food and Bioprocess Technology. doi:10.1007/s11947-013-1233-2.
Garg, S., & Jana, A. K. (2007). Studies on the properties and characteristics of starch-LDPE blend films using cross-linked, glycerol modified, cross-linked and glycerol modified starch. European Polymer Journal, 43, 3976–3987.
Garg, S., & Jana, A. K. (2011). Effect of propylation of starch with different degrees of substitution on the properties and characteristics of starch-low density polyethylene blend films. Journal of Applied Polymer Science, 122, 2197–2208.
Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011). Physical, mechanical, barrier, an thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydrate Polymers, 84(1), 477–483.
González-Fandos, E., Herrera, B., & Maya, N. (2009). Efficacy of citric acid against Listeria monocytogenes attached to poultry skin during refrigerated storage. International Journal of Food Science and Technology, 44, 262–268.
Hood, D. E., & Riordan, E. B. (1973). Discoloration in pre-packaged beef: measurement by reflectance spectrophotometry and shopper discrimination. Journal of Food Technology, 8, 333–343.
Hwang, S. W., Shim, J. K., Selke, S., Soto-Valdez, H., Matuana, L., Rubino, M., & Auras, R. (2013). Migration of α-tocopherol and resveratrol from poly(l-lactic acid)/starch blends films into ethanol. Journal of Food Engineering, 116, 814–828.
Instituto Adolfo Lutz (2005). Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Métodos físico-químicos para análise de alimentos. Brasília.
Isdell, E., Allen, P., Doherty, A., & Butler, F. (2003). Effect of packaging cycle on the colour stability of six beef muscles stored in a modified atmosphere mother pack system with oxygen scavengers. International Journal of Science and Technology, 38, 623–632.
Jay, J. M. (1992). Modern food microbiology (4th ed.). New York: Chapman & Hall.
Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and biodegradable starch films: a review. Food and Bioprocess Technology, 5(6), 2058–2076.
Jokar, M., Rahman, R. A., Ibrahim, N. A., Abdullah, L. C., & Tan, C. P. (2012). Melt production and antimicrobial efficiency of low-density polyethylene (LDPE)-silver nanocomposite film. Food and Bioprocess Technology, 5(2), 719–728.
Junqueira, M. S., Soares, N. F. F., Reis, R. C., Carneiro, J. D. S., Benicio, R. T., & Yokota, S. R. C. (2009). Efeito de embalagens ativas no escurecimento enzimático de batatas (Solanum tuberosum) fatiadas e minimamente processadas. Semina: Ciências Agrárias, 30(3), 613–618.
Ke, S., Huang, Y., Decker, E. A., & Hultin, H. O. (2009). Impact of citric acid on the tenderness, microstructure and oxidative stability of beef muscle. Meat Science, 82, 113–118.
Kuorwel, K. K., Cran, M. J., Sonneveld, K., Miltz, J., & Bigger, S. W. (2013). Migration of antimicrobial agents from starch-based films into a food simulant. LWT – Food Science and Technology, 50, 432–438.
Kweon, D.-K., Cha, D.-S., Park, H.-J., & Lim, S.-T. (2000). Starch-g-polycaprolactone copolymerization using diisocyanate intermediates and thermal characteristics of the copolymers. Journal of Applied Polymer Science, 78(5), 986–993.
Lee, K. Y., Shim, J., & Lee, H. G. (2004). Mechanical properties of gellan and gelatin composite films. Carbohydrate Polymers, 56, 251–254.
López-De-Dicastillo, C., Catala, R., Gavara, R., & Hernandez-Munoz, P. (2011). Food applications of active packaging EVOH films containing cyclodextrins for the preferential scavenging of undesirable compounds. Journal of Food Engineering, 104, 380–386.
Ma, X. F., Yu, J. G., & Ma, Y. B. (2005). Urea and formamide as a mixed plasticizer for thermoplastic wheat flour. Carbohydrate Polymers, 60, 111–116.
Ma, X., Chang, P. R., Yu, J., & Wang, N. (2008). Preparation and properties of biodegradable poly(propylene carbonate)/thermoplastic dried starch composites. Carbohydrate Polymers, 71(2), 229–234.
Maa, X., Chang, P. R., Yang, J., & Yu, J. (2009). Preparation and properties of glycerol plasticized-pea starch/zinc oxide-starch bionanocomposites. Carbohydrate Polymers, 75, 472–478.
Mani, R., & Bhattacharya, M. (1998). Property’s injection moulded starch/synthetic polymer blends—III. Effect of amylopectin to amylase ratio in starch. European Polymer Journal, 34, 1467–1475.
Mano, J. F., Koniarova, D., & Reis, R. L. (2003). Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. Journal of Materials Science: Materials in Medicine, 14(2), 127–135.
Miranda, V. R., & Carvalho, A. J. F. (2011). Blendas compatíveis de amido termoplástico e polietileno de baixa densidade compatibilizadas com ácido cítrico. Polímeros, 21(5), 353–360.
Morrissey, P. A., Sheehy, P. J. A., Galvin, K., Kerry, J. P., & Buckley, D. J. (1998). Lipid stability in meat and meat products. Meat Science, 49, 73–86.
Muriel-Galet, V., Cerisuelo, J. P., López-Carballo, G., & Lara, M. (2012). Development of antimicrobial films for microbiological control of packaged salad. International Journal of Food Microbiology, 157, 195–201.
Ning, W., Jiugao, Y., Xiaofei, M., & Ying, W. (2007). The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohydrate Polymers, 67, 446–453.
Nishida, H., & Tokiwa, Y. (1993). Distribution of poly(β-hydroxybutirate) and poly(-caprolactone) aerobic degrading microorganisms in different environments. Carbohydrate Polymers, 59, 1–9.
Park, J. W., Im, S. S., Kim, S. H., & Kim, Y. H. (2000). Biodegradable polymer blends of poly(l-lactic acid) and gelatinized starch. Polymer Engineering & Science, 40(12), 2539–2550.
Pascoal, A. M., Mitidieri, S., & Fernandes, K. F. (2011). Immobilisation of α-amylase from Aspergillus niger onto polyaniline. Food and Bioproducts Processing, 89(4), 300–306.
Pawlak, A., & Mucha, M. (2003). Thermogravimetric and FTIR studies of chitosan blends. Thermochimica Acta, 396, 153–166.
Pedroso, A. G., & Rosa, D. S. (2005). Mechanical, thermal and morphological characterization of recycled LDPE/corn starch blends. Carbohydrate Polymers, 59, 1–9.
Pires, A. C. S., Soares, N. F. F., Andrade, N. J., Silva, L. H., Camilloto, G., & Campos, B. P. (2008). Development and evaluation of active packaging for sliced mozzarella preservation. Packaging Technology & Science, 7, 375–383.
Raharjo, S., Sofos, J. N., & Schmidt, G. R. (1992). Improved speed, specificity and limit of determination of an aqueous acid extraction thiobarbituric acid-C18 method for measuring lipid peroxidation in beef. Journal of Agricultural and Food Chemistry, 40(12), 2182–2185.
Rahman, M. M., Karim, R., Mustafa, A. I., & Khan, M. A. (2012). Preparation and characterization of bioblends from gelatin and linear low density polyethylene (LLDPE) by extrusion method. Journal of Adhesion Science and Technology, 26, 1281–1294.
Renerre, M. (1990). Review: factors involved in the discoloration of beef meat. International Journal of Food Science and Technology, 25, 613–630.
Ruiz, H. V., Martín-Martínez, E. S., & Aguilar Méndez, M. A. (2011). Biodegradability of polyethylene-starch blends prepared by extrusion and molded by injection: evaluated by response surface methodology. Starch, 63, 42–51.
Santonja-Blasco, L., Contat-Rodrigo, L., Moriana-Torro, R., & Ribes-Greus, A. (2007). Thermal characterization of polyethylene blends with a biodegradable masterbatch subjected to thermo-oxidative treatment and subsequent soil burial test. Journal of Applied Polymer Science, 106, 2218–2230.
Shah, P. B., Bandopadhyay, S., & Bellare, J. R. (1995). Environmentally degradable starch filled low density polyethylene. Polymer Degradation and Stability, 47, 165–173.
Sheard, P. R., Enser, M., Wood, J. D., Nute, G. R., Gill, B. P., & Richardson, R. I. (2000). Shelf life and quality of pork products with raised n-3 PUFA. Meat Science, 55, 213–221.
Silveira, M. F. A., Soares, N. F. F., Geraldine, R. M., Andrade, N. J., Botrel, D. A., & Gonçalves, M. P. J. (2007). Active film incorporated with sorbic acid on pastry dough conservation. Food Control, 18, 1063–1067.
Sionkowska, A. (2011). Current research on the blends of natural and synthetic polymers as new biomaterials: review. Progress in Polymer Science, 36, 1254–1276.
Soares, N. F. F., Sa, S. C. A., Santiago-Silva, P. Espitia, P.J.P., Gonçalves, M.P.J.C., Lopez, M.J.G., et al. (2010). Active and intelligent packaging for milk and milk products. In: J. S. R. Coimbra, J. A. Teixeira (Eds.), Engineering aspects of milk and dairy products (pp 175–199). Taylor & Francis Group
St-Pierre, N., Favis, B. D., Ramsay, B. A., Ramsay, J. A., & Verhoogt, H. (1997). Processing and characterization of thermoplastic starch/polyethylene blends. Polymer, 38, 648–655.
Sun, X. D., & Holley, R. A. (2012). Antimicrobial and antioxidative strategies to reduce pathogens and extend the shelf life of fresh red meats. Comprehensive Reviews in Food Science and Food Safety, 11, 340–354.
Sunilkumar, M., Francis, T., Thachil, E. T., & Sujith, A. (2012). Low density polyethylene-chitosan composites: a study based on biodegradation. Chemical Engineering Journal, 204–206, 114–124.
Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68(2), 408–420.
Thakore, I. M., Desai, S., Sarawade, B. D., & Devi, S. (2001). Studies on biodegradability, morphology and thermomechanical properties of LDPE/modified starch blends. European Polymer Journal, 37, 151–160.
Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14, 71–78.
Troy, D. J., & Kerry, J. P. (2010). Consumer perception and the role of science in the meat industry. Meat Science, 86, 214–226.
Versant, E. F., Van, D. E. R., Voort, P., & Vrancken, K. C. (1995). Characterization and chemical modification of the silica surface (p. 93). Amsterdam: Elsevier Science BV. In Studies in surface science and catalysis.
Vieyra, H., Martín-Martínez, E. S., & Aguilar-Méndez, M. A. (2011). Biodegradability of polyethylene-starch blends prepared by extrusion and model by injection: evaluated by response surface methodology. Starch, 63, 42–51.
Vieyra, H., Aguilar-Méndez, M. A., & Martín-Martínez, E. S. (2013). Study of biodegradation evolution during composting of polyethylene-starch blends using scanning electron microscopy. Journal of Applied Polymer Science, 127(2), 845–853.
Vinhas, G. M., Lima, S. M., Santos, L. V., Lima, M. A. G. A., & Almeida, Y. M. B. (2007). Evaluation of the types of starch for preparation of LDPE/starch blend. Brazilian Archives of Biology and Technology, 50, 361–370.
Walker, A. M., Tao, Y., & Torkelson, J. M. (2007). Polyethylene/starch blends with enhanced oxygen barrier and mechanical properties: effect of granule morphology damage by solid-state shear pulverization. Polymer, 48, 1066–1074.
Yildiz-Turp, G., & Serdaroglu, M. (2010). Effects of using plum puree on some properties of low fat beef patties. Meat Science, 86, 896–900.
Yua, F., Prashanthaa, K., Soulestina, J., Lacrampea, M.-F., & Krawczaka, P. (2013). Plasticized-starch/poly(ethylene oxide) blends prepared by extrusion. Carbohydrate Polymers, 91, 253–261.