Biochemical characterization of Cdk2-Speedy/Ringo A2

BMC Biochemistry - Tập 6 - Trang 1-17 - 2005
Aiyang Cheng1, Shannon Gerry1,2, Philipp Kaldis3, Mark J Solomon1
1Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, USA
2Department of Biological Sciences, University of Rhode Island, Kingston, USA
3Mouse Cancer Genetics Program, National Cancer Institute, Frederick, USA

Tóm tắt

Normal cell cycle progression requires the precise activation and inactivation of cyclin-dependent protein kinases (CDKs), which consist of a CDK and a cyclin subunit. A novel cell cycle regulator called Speedy/Ringo shows no sequence similarity to cyclins, yet can directly bind to and activate CDKs. Speedy/Ringo proteins, which bind to and activate Cdc2 and Cdk2 in vitro, are required for the G2 to M transition during Xenopus oocyte maturation and for normal S-phase entry in cultured human cells. We have characterized the substrate specificity and enzymatic activity of human Cdk2-Speedy/Ringo A2 in order to gain insights into the possible functions of this complex. In contrast to Cdk2-cyclin A, which has a well-defined consensus target site ((S/T)PX(K/R)) that strongly favors substrates containing a lysine at the +3 position of substrates, Cdk2-Speedy/Ringo A2 displayed a broad substrate specificity at this position. Consequently, Cdk2-Ringo/Speedy A2 phosphorylated optimal Cdk2 substrates such as histone H1 and a KSPRK peptide poorly, only ~0.08% as well as Cdk2-cyclin A, but non-canonical Cdk2 substrates such as a KSPRY peptide relatively well, with an efficiency of ~80% compared to Cdk2-cyclin A. Cdk2-Speedy/Ringo A2 also phosphorylated authentic Cdk2 substrates, such as Cdc25 proteins, which contain non-canonical CDK phosphorylation sites, nearly as well as Cdk2-cyclin A. Phosphopeptide mapping indicated that Cdk2-Speedy/Ringo A2 and Cdk2-cyclin A phosphorylate distinct subsets of sites on Cdc25 proteins. Thus, the low activity that Cdk2-Speedy/Ringo A2 displays when assayed on conventional Cdk2 substrates may significantly underestimate the potential physiological importance of Cdk2-Speedy/Ringo A2 in phosphorylating key subsets of Cdk2 substrates. Unlike Cdk2-cyclin A, whose activity depends strongly on activating phosphorylation of Cdk2 on Thr-160, neither the overall catalytic activity nor the substrate recognition by Cdk2-Speedy/Ringo A2 was significantly affected by this phosphorylation. Furthermore, Cdk2-Speedy/Ringo A2 was not a suitable substrate for metazoan CAK (which phosphorylates Cdk2 at Thr-160), supporting the notion that Speedy/Ringo A2 activates Cdk2 in a CAK-independent manner. There are major differences in substrate preferences between CDK-Speedy/Ringo A2 and Cdk2-cyclin complexes. These differences may accommodate the CAK-independent activation of Cdk2 by Speedy/Ringo A2 and they raise the possibility that CDK-Speedy/Ringo A2 complexes could phosphorylate and regulate a subset of non-canonical CDK substrates, such as Cdc25 protein phosphatases, to control cell cycle progression.

Tài liệu tham khảo

Pines J: Cyclins and cyclin-dependent kinases: a biochemical view. Biochem J. 1995, 308: 697-711. Sherr CJ, Roberts JM: Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995, 9: 1149-1163. Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999, 13: 1501-1512. King RW, Deshaies RJ, Peters JM, Kirschner MW: How proteolysis drives the cell cycle. Science. 1996, 274: 1652-1659. 10.1126/science.274.5293.1652. Morgan DO: The dynamics of cyclin dependent kinase structure. Curr Opin Cell Biol. 1996, 8: 767-772. 10.1016/S0955-0674(96)80076-7. Morgan DO: Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol. 1997, 13: 261-291. 10.1146/annurev.cellbio.13.1.261. Solomon MJ, Kaldis P: Regulation of CDKs by phosphorylation. Results and Problems in Cell Differentiation. Edited by: Pagano M. 1998, Heidelberg: Springer, 79-109. Solomon MJ, Glotzer M, Lee TH, Philippe M, Kirschner MW: Cyclin activation of p34cdc2. Cell. 1990, 63: 1013-1024. 10.1016/0092-8674(90)90504-8. Solomon MJ, Lee T, Kirschner MW: Role of phosphorylation in p34cdc2 activation: identification of an activating kinase. Mol Biol Cell. 1992, 3: 13-27. Fesquet D, Labbé JC, Derancourt J, Capony JP, Galas S, Girard F, Lorca T, Shuttleworth J, Dorée M, Cavadore JC: The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J. 1993, 12: 3111-3121. Poon RY, Yamashita K, Adamczewski JP, Hunt T, Shuttleworth J: The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2. EMBO J. 1993, 12: 3123-3132. Solomon MJ, Harper JW, Shuttleworth J: CAK, the p34cdc2 activating kinase, contains a protein identical or closely related to p40MO15. EMBO J. 1993, 12: 3133-3142. Solomon MJ: Activation of the various cyclin/cdc2 protein kinases. Curr Opin Cell Biol. 1993, 5: 180-186. 10.1016/0955-0674(93)90100-5. Kaldis P, Sutton A, Solomon MJ: The Cdk-activating kinase (CAK) from budding yeast. Cell. 1996, 86: 553-564. 10.1016/S0092-8674(00)80129-4. Espinoza FH, Farrell A, Erdjument-Bromage H, Tempst P, Morgan DO: A cyclin-dependent kinase-activating kinase (CAK) in budding yeast unrelated to vertebrate CAK. Science. 1996, 273: 1714-1717. Thuret JY, Valay JG, Faye G, Mann C: Civ1 (CAK in vivo), a novel Cdk-activating kinase. Cell. 1996, 86: 565-576. 10.1016/S0092-8674(00)80130-0. Peeper DS, Parker LL, Ewen ME, Toebes M, Hall FL, Xu M, Zantema A, van der Eb AJ, Piwnica-Worms H: A- and B-type cyclins differentially modulate substrate specificity of cyclin-cdk complexes. EMBO J. 1993, 12: 1947-1954. Schulman BA, Lindstrom DL, Harlow E: Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc Natl Acad Sci USA. 1998, 95: 10453-10458. 10.1073/pnas.95.18.10453. Tyers M, Tokiwa G, Futcher B: Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 1993, 12: 1955-1968. Levine K, Huang K, Cross FR: Saccharomyces cerevisiae G1 cyclins differ in their intrinsic functional specificities. Mol Cell Biol. 1996, 16: 6794-6803. Pines J, Hunter T: Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J Cell Biol. 1991, 115: 1-17. 10.1083/jcb.115.1.1. Nigg EA: The substrates of the cdc2 kinase. Semin Cell Biol. 1991, 2: 261-270. Songyang Z, Blechner S, Hoagland N, Hoekstra MF, Piwnica-Worms H, Cantley LC: Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr Biol. 1994, 4: 973-982. 10.1016/S0960-9822(00)00221-9. Holmes JK, Solomon MJ: A predictive scale for evaluating cyclin-dependent kinase substrates. A comparison of p34cdc2 and p33cdk2. J Biol Chem. 1996, 271: 25240-25246. 10.1074/jbc.271.41.25240. Lenormand JL, Dellinger RW, Knudsen KE, Subramani S, Donoghue DJ: Speedy: a novel cell cycle regulator of the G2/M transition. EMBO J. 1999, 18: 1869-1877. 10.1093/emboj/18.7.1869. Ferby I, Blazquez M, Palmer A, Eritja R, Nebreda AR: A novel p34(cdc2)-binding and activating protein that is necessary and sufficient to trigger G(2)/M progression in Xenopus oocytes. Genes Dev. 1999, 13: 2177-2189. Karaiskou A, Perez LH, Ferby I, Ozon R, Jessus C, Nebreda AR: Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins. J Biol Chem. 2001, 276: 36028-36034. 10.1074/jbc.M104722200. Porter LA, Dellinger RW, Tynan JA, Barnes EA, Kong M, Lenormand JL, Donoghue DJ: Human Speedy: a novel cell cycle regulator that enhances proliferation through activation of Cdk2. J Cell Biol. 2002, 157: 357-366. 10.1083/jcb.200109045. Stevenson LM, Deal MS, Hagopian JC, Lew J: Activation mechanism of CDK2: role of cyclin binding versus phosphorylation. Biochemistry. 2002, 41: 8528-8534. 10.1021/bi025812h. Holmes JK, Solomon MJ: The role of Thr160 phosphorylation of Cdk2 in substrate recognition. Eur J Biochem. 2001, 268: 4647-4652. 10.1046/j.1432-1327.2001.02392.x. Brown NR, Noble ME, Endicott JA, Johnson LN: The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol. 1999, 1: 438-443. 10.1038/15674. Tarricone C, Dhavan R, Peng J, Areces LB, Tsai LH, Musacchio A: Structure and regulation of the CDK5-p25(nck5a) complex. Mol Cell. 2001, 8: 657-669. 10.1016/S1097-2765(01)00343-4. Brown NR, Noble ME, Lawrie AM, Morris MC, Tunnah P, Divita G, Johnson LN, Endicott JA: Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. J Biol Chem. 1999, 274: 8746-8756. 10.1074/jbc.274.13.8746. Cheng A, Xiong W, Ferrell JE, Solomon MJ: Identification and comparative analysis of multiple mammalian Speedy/Ringo proteins. Cell Cycle. 2005, 4: 155-165. Busino L, Chiesa M, Draetta GF, Donzelli M: Cdc25A phosphatase: combinatorial phosphorylation, ubiquitylation and proteolysis. Oncogene. 2004, 23: 2050-2056. 10.1038/sj.onc.1207394. Cans C, Ducommun B, Baldin V: Proteasome-dependent degradation of human CDC25B phosphatase. Mol Biol Rep. 1999, 26: 53-57. 10.1023/A:1006912105352. Nilsson I, Hoffmann I: Cell cycle regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res. 2000, 4: 107-114. Kaldis P, Russo AA, Chou HS, Pavletich NP, Solomon MJ: Human and yeast cdk-activating kinases (CAKs) display distinct substrate specificities. Mol Biol Cell. 1998, 9: 2545-2560. Cheng A, Ross KE, Kaldis P, Solomon MJ: Dephosphorylation of cyclin-dependent kinases by type 2C protein phosphatases. Genes Dev. 1999, 13: 2946-2957. 10.1101/gad.13.22.2946. Cheng A, Kaldis P, Solomon MJ: Dephosphorylation of human cyclin-dependent kinases by protein phosphatase type 2C alpha and beta 2 isoforms. J Biol Chem. 2000, 275: 34744-34749. 10.1074/jbc.M006210200. Song H, Hanlon N, Brown NR, Noble ME, Johnson LN, Barford D: Phosphoprotein-protein interactions revealed by the crystal structure of kinase-associated phosphatase in complex with phosphoCDK2. Mol Cell. 2001, 7: 615-626. 10.1016/S1097-2765(01)00208-8. Chen J, Saha P, Kornbluth S, Dynlacht BD, Dutta A: Cyclin-binding motifs are essential for the function of p21CIP1. Mol Cell Biol. 1996, 16: 4673-4682. Adams PD, Li X, Sellers WR, Baker KB, Leng X, Harper JW, Taya Y, Kaelin WG: Retinoblastoma protein contains a C-terminal motif that targets it for phosphorylation by cyclin-cdk complexes. Mol Cell Biol. 1999, 19: 1068-1080. Zhu L, Enders G, Lees JA, Beijersbergen RL, Bernards R, Harlow E: The pRB-related protein p107 contains two growth suppression domains: independent interactions with E2F and cyclin/cdk complexes. EMBO J. 1995, 14: 1904-1913. Loog M, Morgan DO: Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature. 2005, 434: 104-118. 10.1038/nature03329. Archambault V, Buchler NE, Wilmes GM, Jacobson MD, Cross FR: Two-faced cyclins with eyes on the targets. Cell Cycle. 2005, 4: 125-130. Kaldis P, Cheng A, Solomon MJ: The effects of changing the site of activating phosphorylation in CDK2 from threonine to serine. J Biol Chem. 2000, 275: 32578-32584. 10.1074/jbc.M003212200. Hagopian JC, Kirtley MP, Stevenson LM, Gergis RM, Russo AA, Pavletich NP, Parsons SM, Lew J: Kinetic basis for activation of CDK2/cyclin A by phosphorylation. J Biol Chem. 2001, 276: 275-280. 10.1074/jbc.M007337200. Saha P, Eichbaum Q, Silberman ED, Mayer BJ, Dutta A: p21CIP1 and Cdc25A: competition between an inhibitor and an activator of cyclin-dependent kinases. Mol Cell Biol. 1997, 17: 4338-4345. El-Guindy AS, Miller G: Phosphorylation of Epstein-Barr virus ZEBRA protein at its casein kinase 2 sites mediates its ability to repress activation of a viral lytic cycle late gene by Rta. J Virol. 2004, 78: 7634-7644. 10.1128/JVI.78.14.7634-7644.2004.