Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các dấu hiệu sinh hóa và tế bào ở cá hồi nâu (Salmo trutta f. fario) phản ứng với các loại thuốc chống trầm cảm citalopram và venlafaxine
Tóm tắt
Trong những thập kỷ gần đây, số lượng trường hợp trầm cảm trên toàn thế giới đã gia tăng, đi kèm với tỷ lệ kê đơn thuốc chống trầm cảm gia tăng. Tại Đức, hai loại thuốc chống trầm cảm được kê đơn nhiều nhất là citalopram, một thuốc ức chế tái hấp thu serotonin có chọn lọc (SSRI) và venlafaxine, một thuốc ức chế tái hấp thu serotonin và noradrenalin (SNRI), chiếm khoảng 30% thị trường. Cả hai loại thuốc chống trầm cảm này thường được tìm thấy trong nước mặt và có khả năng ảnh hưởng tiêu cực đến sinh vật thủy sản. Hầu hết các nghiên cứu liên quan đến thuốc chống trầm cảm tập trung vào các điểm cuối cao cấp và hành vi, tuy nhiên, chỉ có một vài nghiên cứu điều tra về các dấu hiệu sinh hóa và những biến đổi mô học. Chúng tôi đã thực hiện các thí nghiệm phơi nhiễm citalopram và venlafaxine trong vòng 5 tháng, bắt đầu từ trứng cá hồi nâu ở giai đoạn trứng nhìn thấy, cũng như với cá hồi nâu vị thành niên trong khoảng 4 tuần. Nồng độ phơi nhiễm dao động từ 1 µg/L, phù hợp với môi trường cho đến 1 mg/L. Trong nghiên cứu này, chúng tôi đã điều tra các hiệu ứng của các loại thuốc chống trầm cảm đối với hoạt động b-esterase (độc tính thần kinh), mức độ protein dưới stress (độc tính protein) và hoạt động men superoxide dismutase (stress oxy hóa). Ngoài ra, chúng tôi đánh giá tình trạng sức khỏe của gan thông qua các phân tích mô học. Chúng tôi đã chứng minh rằng cả hai loại thuốc chống trầm cảm đều không gây ra hiệu ứng độc tính protein hay độc tính thần kinh ở cá hồi nâu. Tuy nhiên, đối với venlafaxine, dấu hiệu sinh hóa cho stress oxy hóa (hoạt động men superoxide dismutase) đã tăng đáng kể ở ấu trùng được phơi nhiễm ít nhất 10 µg/L venlafaxine ở 7 °C. Về mô học gan, cá được phơi nhiễm ở nồng độ citalopram cao hơn có tình trạng sức khỏe tồi tệ hơn so với cá đối chứng, không phụ thuộc vào giai đoạn sống của chúng. Ngoài ra, lượng năng lượng dự trữ của cá được phơi nhiễm 1 mg/L citalopram đã giảm. Do đó, chúng tôi báo cáo những biến đổi mô học phụ thuộc vào citalopram ở gan cá hồi nâu và sự kích thích stress oxy hóa bởi venlafaxine.
Từ khóa
#trầm cảm #citalopram #venlafaxine #cá hồi nâu #độc tính #stress oxy hóaTài liệu tham khảo
Liu Q, He H, Yang J, Feng X, Zhao F, Lyu J (2020) Changes in the global burden of depression from 1990 to 2017: findings from the Global Burden of Disease study. J Psychiatr Res 126:134–140. https://doi.org/10.1016/j.jpsychires.2019.08.002
Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jonsson B, Olesen J, Allgulander C, Alonso J, Faravelli C, Fratiglioni L, Jennum P, Lieb R, Maercker A, van Os J, Preisig M, Salvador-Carulla L, Simon R, Steinhausen HC (2010) The size and burden of mental disorders and other disorders of the brain in Europe. Eur Neuropsychopharmacol 21(9):655–679. https://doi.org/10.1016/j.euroneuro.2011.07.018
Schwabe U, Paffrath D, Ludwig W-D, Klauber J (2019) Arzneiverordnungsreport 2019. Springer-Verlag GmbH, Berlin
Bezchlibnyk-Butler K, Aleksic I, Kennedy SH (2000) Citalopram - a review of pharmacological and clinical effects. J Psychiatry Neurosci 25(3):241–254
Holliday SM, Benfield P (1995) Venlafaxine: a review of its pharmacology and therapeutic potential in depression. Drugs 49(2):280–294. https://doi.org/10.2165/00003495-199549020-00010
Burnett F, Dinan TG (1998) Venlafaxine. Pharmacology and therapeutic potential in the treatment of depression, human psychopharmacology 13:153–162. https://doi.org/10.1002/(SICI)1099-1077(199804)13:3%3c153:AID-HUP973%3e3.0.CO;2-S
Mackulak T, Mosny M, Skubak J, Grabic R, Birosova L (2015) Fate of psychoactive compounds in wastewater treatment plant and the possibility of their degradation using aquatic plants. Environ Toxicol Pharmacol 39(2):969–973. https://doi.org/10.1016/j.etap.2015.02.018
Noble S, Benfield P (1997) Citalopram. CNS Drugs 8(5):410–431. https://doi.org/10.2165/00023210-199708050-00009
Golovko O, Kumar V, Fedorova G, Randak T, Grabic R (2014) Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant. Chemosphere 111:418–426. https://doi.org/10.1016/j.chemosphere.2014.03.132
Lajeunesse A, Smyth SA, Barclay K, Sauve S, Gagnon C (2012) Distribution of antidepressant residues in wastewater and biosolids following different treatment processes by municipal wastewater treatment plants in Canada. Water Res 46(17):5600–5612. https://doi.org/10.1016/j.watres.2012.07.042
Ferrer I, Thurman EM (2012) Analysis of 100 pharmaceuticals and their degradates in water samples by liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr A 1259:148–157. https://doi.org/10.1016/j.chroma.2012.03.059
Fick J, Söderström H, Lindberg RH, Phan C, Tysklind M, Larsson DGJ (2009) Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem 28(12):2522–2527. https://doi.org/10.1897/09-073.s1
Grabicova K, Grabic R, Fedorova G, Fick J, Cerveny D, Kolarova J, Turek J, Zlabek V, Randak T (2017) Bioaccumulation of psychoactive pharmaceuticals in fish in an effluent dominated stream. Water Res 124:654–662. https://doi.org/10.1016/j.watres.2017.08.018
Himmelsbach M, Buchberger W, Klampfl CW (2006) Determination of antidepressants in surface and waste water samples by capillary electrophoresis with electrospray ionization mass spectrometric detection after preconcentration using off-line solid-phase extraction. Electrophoresis 27(5–6):1220–1226. https://doi.org/10.1002/elps.200500693
Lajeunesse A, Gagnon C, Sauvé S (2008) Determination of basic antidepressants and their N-desmethyl metabolites in raw sewage and wastewater using solid-phase extraction and liquid chromatography-tandem mass spectrometry. Anal Chem (Washington) 80(14):5325–5333. https://doi.org/10.1021/ac800162q
Nodler K, Licha T, Bester K, Sauter M (2010) Development of a multi-residue analytical method, based on liquid chromatography-tandem mass spectrometry, for the simultaneous determination of 46 micro-contaminants in aqueous samples. J Chromatogr A 1217(42):6511–6521. https://doi.org/10.1016/j.chroma.2010.08.048
Schultz MM, Furlong ET, Kolpin DW, Werner SL, Schoenfuss HL, Barber LB, Blazer VS, Norris DO, Vajda AM (2010) Antidepressant pharmaceuticals in two US effluent-impacted streams: occurrence and fate in water and sediment, and selective uptake in fish neural tissue. Environ Sci Technol 44:1918–1925. https://doi.org/10.1021/es9022706
Silva LJ, Pereira AM, Meisel LM, Lino CM, Pena A (2014) A one-year follow-up analysis of antidepressants in Portuguese wastewaters: occurrence and fate, seasonal influence, and risk assessment. Sci Total Environ 490:279–287. https://doi.org/10.1016/j.scitotenv.2014.04.131
Larsson DG, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148(3):751–755. https://doi.org/10.1016/j.jhazmat.2007.07.008
Brodin T, Piovano S, Fick J, Klaminder J, Heynen M, Jonsson M (2014) Ecological effects of pharmaceuticals in aquatic systems–impacts through behavioural alterations. Philos Trans R Soc London B Biol Sci. https://doi.org/10.1098/rstb.2013.0580
Sehonova P, Svobodova Z, Dolezelova P, Vosmerova P, Faggio C (2018) Effects of waterborne antidepressants on non-target animals living in the aquatic environment: a review. Sci Total Environ 631–632:789–794. https://doi.org/10.1016/j.scitotenv.2018.03.076
Melvin SD (2017) Effect of antidepressants on circadian rhythms in fish: insights and implications regarding the design of behavioural toxicity tests. Aquat Toxicol 182:20–30. https://doi.org/10.1016/j.aquatox.2016.11.007
Painter MM, Buerkley MA, Julius ML, Vajda AM, Norris DO, Barber LB, Furlong ET, Schultz MM, Schoenfuss HL (2009) Antidepressants at Environmentaly Relevant Concentrations affect Predator Avoidance Behavior of Larval Fathead Minnows (Pimephales promelas). Environ Toxicol Chem 28(12):2677–2684. https://doi.org/10.1897/08-556.1
Kellner M, Porseryd T, Porsch-Hallstrom I, Hansen SH, Olsen KH (2015) Environmentally relevant concentrations of citalopram partially inhibit feeding in the three-spine stickleback (Gasterosteus aculeatus). Aquat Toxicol 158:165–170. https://doi.org/10.1016/j.aquatox.2014.11.003
Kellner M, Porseryd T, Porsch-Hallstrom I, Borg B, Roufidou C, Olsen KH (2017) Developmental exposure to the SSRI citalopram causes long-lasting behavioural effects in the three-spined stickleback (Gasterosteus aculeatus). Ecotoxicology 27(1):12–22. https://doi.org/10.1007/s10646-017-1866-4
Maulvault AL, Santos L, Paula JR, Camacho C, Pissarra V, Fogaca F, Barbosa V, Alves R, Ferreira PP, Barcelo D, Rodriguez-Mozaz S, Marques A, Diniz M, Rosa R (2018) Differential behavioural responses to venlafaxine exposure route, warming and acidification in juvenile fish (Argyrosomus regius). Sci Total Environ 634:1136–1147. https://doi.org/10.1016/j.scitotenv.2018.04.015
Kellner M, Porseryd T, Hallgren S, Porsch-Hallstrom I, Hansen SH, Olsen KH (2016) Waterborne citalopram has anxiolytic effects and increases locomotor activity in the three-spine stickleback (Gasterosteus aculeatus). Aquat Toxicol 173:19–28. https://doi.org/10.1016/j.aquatox.2015.12.026
Maulvault AL, Camacho C, Barbosa V, Alves R, Anacleto P, Pousao-Ferreira P, Rosa R, Marques A, Diniz MS (2019) Living in a multi-stressors environment: an integrated biomarker approach to assess the ecotoxicological response of meagre (Argyrosomus regius) to venlafaxine, warming and acidification. Environ Res 169:7–25. https://doi.org/10.1016/j.envres.2018.10.021
Schultz MM, Painter MM, Bartell SE, Logue A, Furlong ET, Werner SL, Schoenfuss HL (2011) Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows. Aquatic Toxicol 104(1–2):38–47. https://doi.org/10.1016/j.aquatox.2011.03.011
Xie Z, Lu G, Li S, Nie Y, Ma B, Liu J (2015) Behavioral and biochemical responses in freshwater fish Carassius auratus exposed to sertraline. Chemosphere 135:146–155. https://doi.org/10.1016/j.chemosphere.2015.04.031
Yang M, Qiu W, Chen J, Zhan J, Pan C, Lei X, Wu M (2014) Growth inhibition and coordinated physiological regulation of zebrafish (Danio rerio) embryos upon sublethal exposure to antidepressant amitriptyline. Aquat Toxicol 151:68–76. https://doi.org/10.1016/j.aquatox.2013.12.029
Nowakowska K, Giebultowicz J, Kamaszewski M, Adamski A, Szudrowicz H, Ostaszewska T, Solarska-Dzieciolowska U, Nalecz-Jawecki G, Wroczynski P, Drobniewska A (2020) Acute exposure of zebrafish (Danio rerio) larvae to environmental concentrations of selected antidepressants: Bioaccumulation, physiological and histological changes. Comparative Biochem Physiol 229:108670. https://doi.org/10.1016/j.cbpc.2019.108670
Rey Vazquez G, Da Cuna RH, Dorelle LS, Lo Nostro FL (2020) Immunohistological Biomarkers of Toxicity by a Pharmaceutical Antidepressant in the Freshwater Cichlid Fish Cichlasoma dimerus (Teleostei, Cichliformes). Bull Environ Contamin Toxicol 104(2):180–184. https://doi.org/10.1007/s00128-019-02770-3
Dußling U, Berg R (2001) Fische in Baden-Württemberg. Ministry for Food and Agriculture Baden-Württemberg, Stuttgart
Klemetsen A, Amundsen P-A, Dempson JB, Jonsson B, Jonsson N, O’Conell MF, Mortensen E (2003) Atlantic salmon Salmo salar L, brown trout Salmo trutta L and Arctic charr Salvelinus alpinus (L): a review of aspects of their life histories. Ecol Freshw Fish 12:1–59. https://doi.org/10.1034/j.1600-0633.2003.00010.x
Aldridge WN (1952) Serum Esterases 1 Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination. Biochem J 1:110–117. https://doi.org/10.1042/bj0530110
Laguerre C, Sanchez-Hernandez JC, Kohler HR, Triebskorn R, Capowiez Y, Rault M, Mazzia C (2009) B-type esterases in the snail Xeropicta derbentina: an enzymological analysis to evaluate their use as biomarkers of pesticide exposure. Environ Pollut 157(1):199–207. https://doi.org/10.1016/j.envpol.2008.07.003
Rault M, Collange B, Mazzia C, Capowiez Y (2008) Dynamics of acetylcholinesterase activity recovery in two earthworm species following exposure to ethyl-parathion. Soil Biol Biochem 40(12):3086–3091. https://doi.org/10.1016/j.soilbio.2008.09.010
Carr RL, Chambers JE (1991) Acute effects of the organophosphate paraoxon on schedule-controlled behavior and esterase activity in rats: dose-response relationships. Pharmacol Biochem Behav 40:929–936. https://doi.org/10.1016/0091-3057(91)90108-E
Sanchez-Hernandez JC, Mazzia C, Capowiez Y, Rault M (2009) Carboxylesterase activity in earthworm gut contents: Potential (eco)toxicological implications. Comparative Biochem Physiol 150(4):503–511. https://doi.org/10.1016/j.cbpc.2009.07.009
Munari M, Marin MG, Matozzo V (2014) Effects of the antidepressant fluoxetine on the immune parameters and acetylcholinesterase activity of the clam Venerupis philippinarum. Marine Environ Res 94:32–37. https://doi.org/10.1016/j.marenvres.2013.11.007
Yang H, Lu G, Yan Z, Liu J, Ma B, Dong H (2017) Biological effects of citalopram in a suspended sediment-water system on Daphnia magna. Environ Sci Pollut Res Int 24(26):21180–21190. https://doi.org/10.1007/s11356-017-9763-1
Regoli F, Giuliani ME (2014) Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Marine Environ Res 93:106–117. https://doi.org/10.1016/j.marenvres.2013.07.006
Pedrajas JR, Peinado J, López-Barea J (1995) Oxidative stress in fish exposed to model xenobiotics, Oxidatively modified forms of Cu, Zn-superoxide dismutase as potential biomarkers. Chemico-Biological Interactions 98:16. https://doi.org/10.1016/0009-2797(95)03651-2
Vutukuru SS, Chintada S, RadhaMadhavi K, VenkateswaraRao J, Anjaneyulu Y (2006) Acute effects of copper on superoxide dismutase, catalase and lipid peroxidation in the freshwater teleost fish, Esomus danricus. Fish Physiol Biochem 32(3):221–229. https://doi.org/10.1007/s10695-006-9004-x
Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64(2):178–189. https://doi.org/10.1016/j.ecoenv.2005.03.013
Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282. https://doi.org/10.1146/annurev.physiol.61.1.243
Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79(2):425–449
Köhler H-R, Bartussek C, Eckwert H, Farian K, Gränzer S, Knigge T, Kunz N (2001) The hepatic stress protein (hsp70) response to interacting abiotic parameters in fish exposed to various levels of pollution. J Aqu Ecosyst Stress Recov 8:261–279. https://doi.org/10.1023/A:1012935931161
Rodriguez EDL, Fanta E (1998) Liver Histopathology of the Fish Brachydanio rerio Hamilton-Buchman after Acute Exposure to Sublethal Levels of the Organophosphate Dimethoate 500. Revista Brasileira de Zoologia 15(2):441–450. https://doi.org/10.1590/s0101-81751998000200014
Bernet D, Schmidt H, Meier W, Burkhardt-Holm P, Wahli T (1999) Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Dis 22:25–34. https://doi.org/10.1046/j.1365-2761.1999.00134.x
Jacob S, Knoll S, Huhn C, Kohler HR, Tisler S, Zwiener C, Triebskorn R (2019) Effects of guanylurea, the transformation product of the antidiabetic drug metformin, on the health of brown trout (Salmo trutta f fario). Peer J 7:e7289. https://doi.org/10.7717/peerj.7289
Triebskorn R, Casper H, Scheil V, Schwaiger J (2007) Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Anal Bioanal Chem 387(4):1405–1416. https://doi.org/10.1007/s00216-006-1033-x
Ziegler M, Knoll S, Köhler H-R, Tisler S, Huhn C, Zwiener C, Triebskorn R (2020) Impact of the antidepressant citalopram on the behaviour of two different life stages of brown trout. PeerJ. https://doi.org/10.7717/peerj.8765
Ziegler M, Banet M, Bauer R, Köhler H-R, Stepinski S, Tisler S, Huhn C, Zwiener C, Triebskorn R (2020) Behavioural and developmental changes in brown trout after exposure to venlafaxine. Manuscript, in preparation, contact: [email protected]
EU (2006) Richtlinie 2006/88/EG des Rates mit Gesundheits- und Hygienevorschriften für Tiere in Aquakultur und Aquakulturerzeignissen und zur Verhühtung und Bekämpfung bestimmter Wassertierkrankheiten, Amtsblatt der Europäischen Union L 328/14, Luxemburg
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Triebskorn R, Telcean I, Casper H, Farkas A, Sandu C, Stan G, Colarescu O, Dori T, Kohler HR (2008) Monitoring pollution in River Mures, Romania, part II: metal accumulation and histopathology in fish. Environ Monit Assessment 141(1–3):177–188. https://doi.org/10.1007/s10661-007-9886-9
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem pp 265-275; ISSN: 0021-9258
Markwell MAK, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210. https://doi.org/10.1016/0003-2697(78)90586-9
Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9
Šinko G, Čalić M, Bosak A, Kovarik Z (2007) Limitation of the Ellman method: Cholinesterase activity measurement in the presence of oximes. Anal Biochem 370(2):223–227. https://doi.org/10.1016/j.ab.2007.07.023
Chanda MS, Mortensen SR, Moser VC, Padilla S (1997) Tissue-specific effects of chlorpyrifos on carboxylesterase and cholinesterase activity in adult rats: an in vitro and in vivo comparison. Fund Appl Nematol 38(2):148–157. https://doi.org/10.1093/toxsci/38.2.148
Jacob S, Dotsch A, Knoll S, Kohler HR, Rogall E, Stoll D, Tisler S, Huhn C, Schwartz T, Zwiener C, Triebskorn R (2018) Does the antidiabetic drug metformin affect embryo development and the health of brown trout (Salmo trutta f fario)? Environ Sci Eur 30(1):48. https://doi.org/10.1186/s12302-018-0179-4
Dieterich A, Troschinski S, Schwarz S, Di Lellis MA, Henneberg A, Fischbach U, Ludwig M, Gartner U, Triebskorn R, Kohler HR (2015) Hsp70 and lipid peroxide levels following heat stress in Xeropicta derbentina (Krynicki 1836) (Gastropoda, Pulmonata) with regard to different colour morphs. Cell Stress Chaperones 20(1):159–168. https://doi.org/10.1007/s12192-014-0534-3
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57(1):12. https://doi.org/10.2307/2346101
Spina E, Santoro V, D’Arrigo C (2008) Clinically relevant pharmacokinetic drug interactions with second-generation antidepressants: an update. Clin Ther 30(7):1206–1227. https://doi.org/10.1016/j.clinthera.2008.07.009
Ahmadian E, Eftekhari A, Fard JK, Babaei H, Nayebi AM, Mohammadnejad D, Eghbal MA (2017) In vitro and in vivo evaluation of the mechanisms of citalopram-induced hepatotoxicity. Arch Pharm Res 40(11):1296–1313. https://doi.org/10.1007/s12272-016-0766-0
Zlatkovic J, Todorovic N, Tomanovic N, Boskovic M, Djordjevic S, Lazarevic-Pasti T, Bernardi RE, Djurdjevic A, Filipovic D (2014) Chronic administration of fluoxetine or clozapine induces oxidative stress in rat liver: a histopathological study. Eur J Pharm Sci 59:20–30. https://doi.org/10.1016/j.ejps.2014.04.010
Özden H, Bildirici K, Üstüner D, Cengis BP, Tülay A, Yilmaz V (2005) Histopathological examination of rat liver after experimental application of fluoxetine. Türkiye Ekopatoloji Dergisi 11(1):9–15
Mohammadi Z, Azarnia M, Mirabolghasemi G, Shiravi A, Mohammadi Z (2013) Histological changes in the liver of fetuses of pregnant rats following citalopram administration. Indian J Pharmacol 45(5):517–521. https://doi.org/10.4103/0253-7613.117726
Hunfeld NGM, ten Berge RL, LeBrun PPH, Smith SJ, Melief PHGJ (2010) Hepatotoxicity related to citalopram intake: a case report. Int J Risk Saf Med 22(1):1–5. https://doi.org/10.3233/jrs-2010-0486
Neumann H, Csepregi A, Evert M, Malfertheiner P (2008) Drug-induced liver disease related to citalopram. J Clin Psychopharmacol 28(2):254–255. https://doi.org/10.1097/jcp.0b013e318167b8e1
Driedzic WR, Short CE (2007) Relationship between food availability, glycerol and glycogen levels in low-temperature challenged rainbow smelt Osmerus mordax. J Exp Biol 210(Pt 16):2866–2872. https://doi.org/10.1242/jeb.003749
Vijayan MM, Moon TW (1992) Acute handling stress alters hepatic glycogen metabolism in food-deprived rainbow-trout (Oncorhynchus mykiss). Can J Fish Aquatic Sci 49(11):7. https://doi.org/10.1139/f92-247
Schwarz S, Schmieg H, Scheurer M, Kohler HR, Triebskorn R (2017) Impact of the NSAID diclofenac on survival, development, behaviour and health of embryonic and juvenile stages of brown trout, Salmo trutta f fario. Sci Total Environ 607–608:1026–1036. https://doi.org/10.1016/j.scitotenv.2017.07.042
Liu Y, Ma D, Xiao Z, Xu S, Wang Y, Wang Y, Xiao Y, Song Z, Teng Z, Liu Q, Li J (2014) Histological change and heat shock protein 70 expression in different tissues of Japanese flounder Paralichthys olivaceus in response to elevated temperature. Chin J Oceanol Limnol 33(1):11–19. https://doi.org/10.1007/s00343-015-4028-7
Birnie-Gauvin K, Costantini D, Cooke SJ, Willmore WG (2017) A comparative and evolutionary approach to oxidative stress in fish: A review. Fish Fisheries 18(5):928–942. https://doi.org/10.1111/faf.12215
Madeira D, Narciso L, Cabral HN, Vinagre C, Diniz MS (2013) Influence of temperature in thermal and oxidative stress responses in estuarine fish. Comparative Biochem Physiol 166(2):237–243. https://doi.org/10.1016/j.cbpa.2013.06.008
Vinagre C, Madeira D, Narciso L, Cabral HN, Diniz M (2012) Effect of temperature on oxidative stress in fish: lipid peroxidation and catalase activity in the muscle of juvenile seabass. Dicentrarchus labrax, Ecological Indicators 23:274–279. https://doi.org/10.1016/j.ecolind.2012.04.009
Mehdi H, Bragg LM, Servos MR, Craig PM (2019) Multiple stressors in the environment: the effects of exposure to an antidepressant (Venlafaxine) and Increased Temperature on Zebrafish Metabolism. Front Physiol 10:1431. https://doi.org/10.3389/fphys.2019.01431
Duarte IA, Pais MP, Reis-Santos P, Cabral HN, Fonseca VF (2019) Biomarker and behavioural responses of an estuarine fish following acute exposure to fluoxetine. Marine Environ Res 147:24–31. https://doi.org/10.1016/j.marenvres.2019.04.002
