Bioactive calcium phosphate materials and applications in bone regeneration

Biomaterials Research - Tập 23 Số 1 - 2019
Jiwoon Jeong1, Jung Hun Kim2, Jung Hee Shim3, Nathaniel S. Hwang1, Chan Yeong Heo3,1
1Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
2School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
3Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea

Tóm tắt

Abstract Background Bone regeneration involves various complex biological processes. Many experiments have been performed using biomaterials in vivo and in vitro to promote and understand bone regeneration. Among the many biomaterials, calcium phosphates which exist in the natural bone have been conducted a number of studies because of its bone regenerative property. It can be directly contributed to bone regeneration process or assist in the use of other biomaterials. Therefore, it is widely used in many applications and has been continuously studied. Mainbody Calcium phosphate has been widely used in bone regeneration applications because it shows osteoconductive and in some cases osteoinductive features. The release of calcium and phosphorus ions regulates the activation of osteoblasts and osteoclasts to facilitate bone regeneration. The control of surface properties and porosity of calcium phosphate affects cell/protein adhesion and growth and regulates bone mineral formation. Properties affecting bioactivity vary depending on the types of calcium phosphates such as HAP, TCP and can be utilized in various applications because of differences in ion release, solubility, stability, and mechanical strength. In order to make use of these properties, different calcium phosphates have been used together or mixed with other materials to complement their disadvantages and to highlight their advantages. Calcium phosphate has been utilized to improve bone regeneration in ways such as increasing osteoconductivity for bone ingrowth, enhancing osteoinductivity for bone mineralization with ion release control, and encapsulating drugs or growth factors. Conclusion Calcium phosphate has been used for bone regeneration in various forms such as coating, cement and scaffold based on its unique bioactive properties and bone regeneration effectiveness. Additionally, several studies have been actively carried out to improve the efficacy of calcium phosphate in combination with various healing agents. By summarizing the properties of calcium phosphate and its research direction, we hope that calcium phosphate can contribute to the clinical treatment approach for bone defect and disease.

Từ khóa


Tài liệu tham khảo

10.1586/17434440.2.1.87

Lemaire V, et al. Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. JTBio. 2004;229:293–309. 1:CAS:528:DC%2BD2cXlsVSgsbc%3D

Schliephake H. Bone growth factors in maxillofacial skeletal reconstruction. IJOMS. 2002;31:469–484.

10.1016/j.jbiomech.2009.10.044

Hulbert S et al. Ceramics in surgery. Journal. 1983.

Hulbert S et al. High tech ceramics ed. P Vincenzini Journal. 1987.

10.1111/j.1151-2916.1991.tb07132.x

Kanazawa T, Umegaki T, Monma H. Apatites, New Inorganic Materials. Ceramics Japan. 1975;10:461–468. 1:CAS:528:DyaE28XhvFygtg%3D%3D

10.1111/j.1582-4934.2007.00103.x

10.1073/pnas.1321717111

Nicholson W. A dictionary of practical and theoretical chemistry, in book a dictionary of practical and theoretical chemistry. London: R. Phillips; 1808.

10.1080/14786444608645625

Wells HG. Pathological calcification. The Journal of medical research. 1906;14:491. 1:STN:280:DC%2BC3crjvFWqsA%3D%3D

10.1097/00000658-192001000-00006

Schram W, Fosdick L. Stimulation of healing in long bones by use of artificial material. J Oral Surg. 1948;6:209. 1:STN:280:DyaH1c%2Fhtlaitg%3D%3D

10.1016/0267-6605(94)90016-7

10.1023/A:1008956430697

10.1002/(SICI)1097-4636(199824)43:4<428::AID-JBM10>3.0.CO;2-0

10.1007/978-3-642-53980-0

10.1002/jcb.10174

10.1016/j.addr.2004.12.017

10.1002/jbm.a.30573

Komori T. Regulation of osteoblast differentiation by Runx2. in Osteoimmunology. Boston: Springer; 2009. p. 43–9.

10.1272/jnms.77.4

10.1016/j.actbio.2005.09.002

10.1016/j.mseb.2008.06.007

10.1007/s10853-006-1467-8

10.2215/CJN.05910809

10.1002/jcp.20353

Riddle RC, et al. MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. American journal of physiology-cell. Physiology. 2006;290:C776–CC84. 1:CAS:528:DC%2BD28Xjt1Sltbc%3D

10.1016/j.bone.2007.09.058

10.1016/S0014-5793(03)00055-3

10.1016/j.bone.2006.09.023

10.1073/pnas.0800642105

10.1007/s00018-010-0527-z

10.1007/s00467-012-2175-z

10.1359/jbmr.090508

10.1016/j.bone.2011.03.675

10.1002/jcp.21283

10.1002/jbmr.294

10.1111/j.1532-849X.2006.00129.x

10.1016/j.actbio.2013.06.014

10.1007/s005860100282

Webster T.J. et al. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res: an official journal of the Society for Biomaterials the Japanese Society for Biomaterials and the Australian Society for Biomaterials and the Korean society for Biomaterials 2000;51:475–483.

10.1007/s10856-007-3347-4

10.1016/S0142-9612(00)00174-5

10.1016/j.colsurfb.2005.11.015

10.1016/j.biomaterials.2008.04.039

10.1016/j.actbio.2009.10.032

10.1016/j.biomaterials.2006.10.003

10.2109/jcersj2.118.753

10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1

10.1016/j.msec.2006.05.038

Sánchez-Salcedo S Arcos D Vallet-Regí M. Upgrading calcium phosphate scaffolds for tissue engineering applications Journal Year. 377:19–42.

10.1016/j.procbio.2006.06.006

10.1016/j.biomaterials.2003.12.006

10.1002/jbm.a.30320

10.1016/S0142-9612(99)00242-2

10.1002/jbm.a.20087

Hu Q, et al. Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. JMCh. 2007;17:4690–4698. 1:CAS:528:DC%2BD2sXht1KjsrfO

10.1016/j.actbio.2009.02.023

10.1007/s10856-012-4705-4

10.1007/s10047-005-0292-1

Mouriño V Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface. 2009:rsif20090379.

10.6028/jres.109.042

Calderin L, Stott M, Rubio A. Electronic and crystallographic structure of apatites. PhRvB. 2003;67:134106.

10.1107/S0108768102019894

10.1007/BF00703460

Rapacz-Kmita A, et al. FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes. JMoSt. 2005;744:653–656.

10.1016/j.biomaterials.2009.01.008

10.1023/A:1021114710076

10.1002/jbm.a.30146

10.1002/jbm.a.31815

10.1007/s10856-009-3756-7

10.1016/j.actbio.2008.07.018

10.1563/1548-1336(2007)33[59:CDIWHA]2.0.CO;2

10.1111/j.1752-248X.2010.01112.x

Hallman M, et al. A 3-year prospective follow-up study of implant-supported fixed prostheses in patients subjected to maxillary sinus floor augmentation with a 80: 20 mixture of deproteinized bovine bone and autogenous bone: Clinical, radiographic and resonance frequency analysis. IJOMS. 2005;34:273–280. 1:STN:280:DC%2BD2M7htVCrsg%3D%3D

Rumpel E, et al. The biodegradation of hydroxyapatite bone graft substitutes in vivo. Folia Morphol (Praha). 2006;65:43–48. 1:STN:280:DC%2BD28zms1KqsA%3D%3D

10.1016/j.biomaterials.2008.05.012

10.1016/j.progpolymsci.2010.03.003

10.1007/s11666-009-9386-2

10.1023/A:1023412131314

10.1016/S0142-9612(01)00392-1

Albrektsson T. Hydroxyapatite-coated implants: a case against their use. JOMS. 1998;56:1312–1326. 1:STN:280:DyaK1M%2Fjs1WjtA%3D%3D

10.1002/jbm.a.30955

10.1002/jbm.a.31911

10.2485/jhtb.19.33

10.1089/ten.tea.2013.0064

10.1186/s12951-015-0099-z

10.22203/eCM.v032a01

10.1016/0022-4596(74)90030-9

10.1107/S0567740877006037

10.1016/S0142-9612(96)00203-7

Horch H-H, et al. Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb®) for bone regeneration in the reconstructive surgery of the jaws. IJOMS. 2006;35:708–713.

10.1016/S0142-9612(97)00036-7

10.1002/jbm.a.30045

Liu H, et al. β-Tricalcium phosphate nanoparticles adhered carbon nanofibrous membrane for human osteoblasts cell culture. MatL. 2010;64:725–728. 1:CAS:528:DC%2BC3cXhs1GrsLc%3D

10.1177/0885328208096798

10.1016/j.biomaterials.2010.01.038

10.1002/jbm.b.31520

10.1016/j.actbio.2011.09.003

Ellinger RF, Nery E, Lynch K. Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report. Int J Periodontics Restorative Dent. 1986;6:22. 1:STN:280:DyaL283nslWrsQ%3D%3D

10.1016/S0142-9612(98)00061-1

10.3390/ma3020815

Daculsi G, Baroth S, LeGeros R. 20 years of biphasic calcium phosphate bioceramics development and applications. Advances in Bioceramics and Porous Ceramics II. 2010. p. 45–58.

10.1016/j.biomaterials.2004.09.035

10.1016/j.ijbiomac.2015.02.021

10.1016/j.msec.2016.03.085

10.1016/j.biomaterials.2003.12.023

Scotchford CA, Vickers M, Ali SY. The isolation and characterization of magnesium whitlockite crystals from human articular cartilage. OsCar. 1995;3:79–94. 1:STN:280:DyaK28%2FhtVCmsA%3D%3D

Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates, in book structure and chemistry of the apatites and other calcium orthophosphates: Elsevier. 2013.

Driessens FC Verbeeck R. Biominerals. Florida: CRC press; 1990.

10.1021/nn405246h

10.1039/C4TB01793E

10.1016/j.biomaterials.2016.10.009

10.1002/adhm.201400824

Cheng P-T, Grabher J, LeGeros R. Effects of magnesium on calcium phosphate formation. Magnesium. 1988;7:123–132. 1:CAS:528:DyaL1MXjsFOjtg%3D%3D

10.1016/0014-4827(88)90191-7

10.1126/science.289.5484.1504

10.1002/term.2166

10.1016/j.actbio.2018.01.016

10.1177/00220345740530012801

Chow LC Eanes ED. Octacalcium phosphate. Vol. 18. Basel: Karger medical and scientific publishers; 2001.

Barrère F, van Blitterswijk CA, de Groot K. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomedicine. 2006;1:317.

10.1107/S0907444998005769

10.2174/092986708783497283

10.1023/A:1011271713758

10.1016/j.biomaterials.2003.09.044

10.1016/j.biomaterials.2005.12.031

10.1016/j.actbio.2008.12.008

Stefanic M, et al. Rapid biomimetic deposition of octacalcium phosphate coatings on zirconia ceramics (Y-TZP) for dental implant applications. ApSS. 2012;258:4649–4656. 1:CAS:528:DC%2BC38XhvFOis7o%3D

Ter Brugge PJ, Wolke JG, Jansen JA. Effect of calcium phosphate coating composition and crystallinity on the response of osteogenic cells in vitro. COIR. 2003;14:472–480.

10.1016/j.actbio.2010.02.017

10.1002/term.390

10.1016/S0142-9612(00)00332-X

10.1016/j.actbio.2009.12.020

10.1016/j.ceramint.2016.02.177

10.1016/j.corsci.2015.11.029

10.1016/j.biomaterials.2008.12.001

10.1016/j.actbio.2009.04.018

10.1002/jbm.b.31742

10.1016/S0142-9612(03)00607-0

10.1016/j.biomaterials.2006.01.029

10.1016/j.colsurfb.2014.09.021

10.1016/j.msec.2009.03.009

10.1177/2041731412439555

Hesaraki S, et al. Rheological properties and Injectability of β-Tricalcium phosphate-hyaluronic acid/polyethylene glycol composites used for the treatment of Vesicouretheral reflux. Biomed Eng Res. 2013;1:40–44.

10.1089/ten.tea.2012.0001

Van de Watering F et al. Biodegradation of calcium phosphate cement composites in Degradation of implant materials: Springer; 2012. p. 139–72.

10.1016/j.ceramint.2015.12.074

10.1016/0142-9612(95)91125-I

10.1016/j.biomaterials.2007.05.015

10.1016/j.actbio.2014.09.036

10.1016/j.matchar.2016.04.011

10.1016/j.drudis.2010.05.003

10.1039/C5TB01423A

10.2106/00004623-200300003-00013

10.1007/s005860100288

Erbe E.M. et al. Biocompatible bone graft material. Journal 2007.

10.1039/c1sm05307h

10.1016/j.ceramint.2015.01.043

Li Q et al. A comparative evaluation of the mechanical properties of two calcium phosphate/collagen composite materials and their osteogenic effects on adipose-derived stem cells. Stem Cells Int. 2016;2016. https://doi.org/10.1155/2016/6409546.

10.1016/j.biomaterials.2013.03.089

10.1016/j.ijbiomac.2014.12.023

10.1016/j.ceramint.2015.05.010

10.1016/j.biomaterials.2010.05.017

10.1016/j.msec.2015.11.055

10.1016/j.msec.2016.03.103

Koempel JA, et al. The effect of recombinant human bone morphogenetic protein-2 on the integration of porous hydroxyapatite implants with bone. Journal of biomedical materials research: an official journal of the Society for Biomaterials. The Japanese Society for Biomaterials, and the Australian Society for Biomaterials. 1998;41:359–363. 1:CAS:528:DyaK1cXktFOgurs%3D

10.1038/ncomms2720

10.1016/j.jdsr.2015.03.004

10.1016/j.actbio.2015.05.014

10.1023/B:JMSM.0000021117.67205.cf

10.1016/j.biomaterials.2008.04.041

10.1002/adhm.201700612

10.1007/s10856-006-0073-2

10.1039/c3ra23450a

10.1016/j.msec.2014.12.031

10.1021/acsami.7b14175

10.1038/boneres.2017.56

10.1016/j.actbio.2011.11.017