Binary classification with classical instances and quantum labels
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aaronson S (2007) The learnability of quantum states. Proc Roy Soc A Math Phys Eng Sci 463 (2088):3089–3114. https://doi.org/10.1098/rspa.2007.0113
Aaronson S (2018) Shadow tomography of quantum states. In: Proceedings of the 50th annual ACM SIGACT symposium on theory of computing. STOC. https://doi.org/10.1145/3188745.3188802, vol 2018. Association for Computing Machinery, New York, pp 325–338
Aaronson S, Hazan EE, Chen X, Kale S, Nayak A (2018) Online learning of quantum states. In: Advances in neural information processing systems, pp 8962–8972
Angluin D, Laird P (1988) Learning from noisy examples. Mach Learn 2(4):343–370. https://doi.org/10.1023/A:1022873112823
Arunachalam S, de Wolf R (2017) Guest column: A survey of quantum learning theory. SIGACT News 48. https://doi.org/10.1145/3106700.3106710
Arunachalam S, de Wolf R (2018) Optimal quantum sample complexity of learning algorithms. J Mach Learn Res 19(71):1–36. http://jmlr.org/papers/v19/18-195.html
Arunachalam S, Chakraborty S, Lee T, Paraashar M, de Wolf R (2019a) Two new results about quantum exact learning. In: Baier C, Chatzigiannakis I, Flocchini P, Leonardi S (eds) 46th International colloquium on automata, languages, and programming (ICALP 2019), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, Leibniz International Proceedings in Informatics (LIPIcs). https://doi.org/10.4230/LIPIcs.ICALP.2019.16. http://drops.dagstuhl.de/opus/volltexte/2019/10592, vol 132, pp 16:1–16:15
Arunachalam S, Grilo AB, Sundaram A (2019b) Quantum hardness of learning shallow classical circuits. arXiv:1903.02840
Arunachalam S, Grilo AB, Yuen H (2020) Quantum statistical query learning
Aslam JA, Decatur SE (1996) On the sample complexity of noise-tolerant learning. Inf Process Lett 57(4):189–195. https://doi.org/10.1016/0020-0190(96)00006-3
Atıcı A, Servedio RA (2007) Quantum algorithms for learning andtestingjuntas. QuantumInfProcess 6(5):323–348. https://doi.org/10.1007/s11128-007-0061-6
Bartlett PL, Mendelson S (2002) Rademacherandgaussiancomplexities:Riskboundsandstructuralresults. JMachLearnRes 3(Nov):463–482. http://www.jmlr.org/papers/volume3/bartlett02a/bartlett02a.pdf
Ben-David S, Dichterman E (1998) Learningwithrestrictedfocusofattention. JComputSystSci 56(3):277–298. https://doi.org/10.1006/jcss.1998.1569
Bernstein E, Vazirani U (1993) Quantumcomplexitytheory. In: Kosaraju R (ed) Proceedingsofthetwenty-fifthannualACMsymposiumonTheoryofcomputing. https://doi.org/10.1145/167088.167097. ACM, NewYork, pp 11–20
Blumer A, Ehrenfeucht A, Haussler D, Warmuth MK (1989) Learnabilityandthevapnik-chervonenkisdimension, vol 36. https://doi.org/10.1145/76359.76371.http://dl.acm.org/ft_{g}ateway.cfm?id=76371&type=pdf
Brandão FGSL, Kastoryano MJ (2019) Finitecorrelationlengthimpliesefficientpreparationofquantumthermalstates. CommunMathPhys 365(1):1–16. https://doi.org/10.1007/s00220-018-3150-8
Bshouty NH, Jackson JC (1998) Learningdnfovertheuniformdistributionusingaquantumexampleoracle. SIAMJComput 28(3):1136–1153. https://doi.org/10.1137/S0097539795293123
Caro MC (2020) Quantumlearningbooleanlinearfunctionsw.r.t.productdistributions. QuantumInfProcess 19(6):1–41. https://doi.org/10.1007/s11128-020-02661-1
Cesa-Bianchi N, Dichterman E, Fischer P, Shamir E, Simon HU (1999) Sample-efficientstrategiesforlearninginthepresenceofnoise. JACM(JACM) 46(5):684–719. https://doi.org/10.1145/324133.324221
Cheng HC, Hsieh MH, Yeh PC (2016) Thelearnabilityofunknownquantummeasurements. QuantumInfComput 16(7-8):615–656
Chowdhury AN (2020) Low,GH, Avariationalquantumalgorithmforpreparingquantumgibbsstates, WiebeN
Chung KM, Lin HH (2018) Sampleefficientalgorithmsforlearningquantumchannelsinpacmodelandtheapproximatestatediscriminationproblem
Ciliberto C, Herbster M, Ialongo AD, Pontil M, Rocchetto A, Severini S, Wossnig L (2018) Quantummachinelearning:Aclassicalperspective. ProcRoySocAMathPhysEngSci 474(2209):20170551. https://doi.org/10.1098/rspa.2017.0551
Cross AW, Smith G, Smolin JA (2015) Quantumlearningrobustagainstnoise. PhysRevA 92 (1):97. https://doi.org/10.1103/PhysRevA.92.012327
Grilo AB, Kerenidis I, Zijlstra T (2017) Learningwitherrorsiseasywithquantumsamples.arXiv:1702.08255
Hanneke S (2016) Theoptimalsamplecomplexityofpaclearning. JMachLearnRes 17(1):1319–1333. http://dl.acm.org/ft_{g}ateway.cfm?id=2946683&type=pdf
Heinosaari T, Ziman M (2012) Themathematicallanguageofquantumtheory:Fromuncertaintytoentanglement. CambridgeUniversityPress, Cambridge. https://doi.org/10.1017/CBO9781139031103
Holevo A (1973) Statisticaldecisiontheoryforquantumsystems. JMultivarAnal 3(4):337–394. https://doi.org/10.1016/0047-259X(73)90028-6
Kanade V, Rocchetto A, Severini S (2019) Learningdnfsunderproductdistributionsviaμ-biasedquantumfouriersampling. QuantumInfComput 19(15&16):1261–1278. http://www.rintonpress.com/xxqic19/qic-19-1516/1261-1278.pdf
Laird PD (1988) Learningfromgoodandbaddata.TheKluwerinternationalseriesinengineeringandcomputersciences,knowledgerepresentation,learning andexpertsystems, vol 47. Springer, Boston. https://doi.org/10.1007/978-1-4613-1685-5
Montanaro A (2012) Thequantumquerycomplexityoflearningmultilinearpolynomials. InfProcessLett 112(11):438–442. https://doi.org/10.1016/j.ipl.2012.03.002
Natarajan N, Dhillon IS, Ravikumar P, Tewari A (2013) Learningwithnoisylabels, pp 1196–1204
Nielsen MA, Chuang IL (2009) Quantumcomputationandquantuminformation, 10th edn. CambridgeUniv.Press, Cambridge
Ristè D, daSilva MP, Ryan CA, Cross AW, Córcoles AD, Smolin JA, Gambetta JM, Chow JM, Johnson BR (2017) Demonstrationofquantumadvantageinmachinelearning. NpjQuantumInf 3 (1):16. https://doi.org/10.1038/s41534-017-0017-3
Servedio RA, Gortler SJ (2004) Equivalencesandseparationsbetweenquantumandclassicallearnability. SIAMJComput 33(5):1067–1092. https://doi.org/10.1137/S0097539704412910
Shalev-Shwartz S, Ben-David S (2014) Understandingmachinelearning:Fromtheorytoalgorithms. CambridgeUniversityPress, Cambridge. https://doi.org/10.1017/CBO9781107298019
Shannon CE (1948) Amathematicaltheoryofcommunication. BellSystTechJ 27(3):379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Valiant LG (1984) Atheoryofthelearnable. CommunACM 27(11):1134–1142. https://doi.org/10.1145/1968.1972
Vapnik VN, Chervonenkis AY (1971) Ontheuniformconvergenceofrelativefrequenciesofeventstotheirprobabilities. TheoryProbabitsAppl 16(2):264–280. https://doi.org/10.1137/1116025
Vershynin R (2018) High-dimensionalprobability:Anintroductionwithapplicationsindatascience,Cambridgeseriesinstatisticalandprobabilistic mathematicsvol47. CambridgeUniversityPress, Cambridge
Watrous J (2018) Thetheoryofquantuminformation. CambridgeUniversityPress, Cambridge. https://doi.org/10.1017/9781316848142
Wilde M (2013) Quantuminformationtheory. CambridgeUniversityPress, Cambridge. https://doi.org/10.1017/CBO9781139525343