Big Data Analytics Capabilities and Innovation: The Mediating Role of Dynamic Capabilities and Moderating Effect of the Environment

British Journal of Management - Tập 30 Số 2 - Trang 272-298 - 2019
Patrick Mikalef1, Maria Boura2, George Lekakos2, John Krogstie1
1Department of Computer Science, Norwegian University of Science and Technology, Sem Sælandsvei 9, 7491, Trondheim, Norway
2Department of Management of Information Technology Athens University of Economics and Business Athens Greece

Tóm tắt

AbstractWith big data analytics growing rapidly in popularity, academics and practitioners have been considering the means through which they can incorporate the shifts these technologies bring into their competitive strategies. Drawing on the resource‐based view, the dynamic capabilities view, and on recent literature on big data analytics, this study examines the indirect relationship between a big data analytics capability (BDAC) and two types of innovation capabilities: incremental and radical. The study extends existing research by proposing that BDACs enable firms to generate insight that can help strengthen their dynamic capabilities, which in turn positively impact incremental and radical innovation capabilities. To test their proposed research model, the authors used survey data from 175 chief information officers and IT managers working in Greek firms. By means of partial least squares structural equation modelling, the results confirm the authors’ assumptions regarding the indirect effect that BDACs have on innovation capabilities. Specifically, they find that dynamic capabilities fully mediate the effect on both incremental and radical innovation capabilities. In addition, under conditions of high environmental heterogeneity, the impact of BDACs on dynamic capabilities and, in sequence, incremental innovation capability is enhanced, while under conditions of high environmental dynamism the effect of dynamic capabilities on incremental innovation capabilities is amplified.

Từ khóa


Tài liệu tham khảo

10.17705/1jais.00423

10.1111/1467-8551.12228

10.1111/1467-8551.12233

10.1007/s12525-016-0219-0

10.24840/2183-0606_003.004_0003

10.1186/s12920-015-0108-y

10.1111/j.1467-8551.2008.00610.x

10.1002/smj.4250140105

Antonakis J., 2014, Causality and endogeneity: problems and solutions, Oxford Handbook of Leadership and Organizations, 1, 93

Aspect(2013). ‘Southwest Airlines heads to the cloud with Aspect software to provide best‐in‐class customer experience [Press release]’. Available athttp://www.aspect.com/company/news/press-releases/southwest-airlines-heads-to-the-cloud-with-aspect-software-to-provide-best-in-class-customer-experience[accessed 15 June 2018].

10.1016/j.jfbs.2013.12.002

10.1177/014920639101700108

10.1016/j.im.2017.09.004

10.2307/3250983

10.1080/07421222.2005.11045844

10.1016/j.jbusres.2016.08.006

Brinkhues R., 2014, Proceedings of the 20th Americas Conference on Information Systems (AMCIS)

10.1007/s12525-016-0228-z

10.1016/j.jbusres.2016.03.048

10.1057/jibs.2009.88

10.1016/j.ins.2014.01.015

10.2307/41703503

10.1111/j.1467-9310.2010.00588.x

Chin W. W., 1998, The partial least squares approach to structural equation modeling, Modern Methods for Business Research, 295, 295

10.1057/jit.2014.17

10.1108/13673270510602809

Davenport T. H., 2012, Data scientist: the sexiest job of the 21st century, Harvard Business Review, 90, 70

Delta(2016). ‘Delta introduces innovative baggage tracking process’. Available athttp://news.delta.com/delta-introduces-innovative-baggage-tracking-process-0[accessed 15 June 2018].

10.1509/jmkr.38.2.269.18845

10.1002/smj.882

10.1016/j.ijinfomgt.2014.06.006

10.1177/109442810142004

10.1002/1097-0266(200010/11)21:10/11<1105::AID-SMJ133>3.0.CO;2-E

10.1016/j.jbusres.2015.07.001

10.1016/j.bdr.2015.02.006

10.1016/j.jbusres.2009.05.003

10.1525/cmr.2016.58.4.78

10.1016/j.jbusres.2015.07.006

10.1016/j.jbusres.2015.12.008

10.1080/07421222.2001.11045669

10.2307/41166664

10.1080/07421222.2018.1451951

10.1016/j.jsis.2017.07.003

10.1108/BPMJ-05-2015-0065

10.1016/j.im.2016.07.004

10.2753/MTP1069-6679190202

10.1007/s11747-011-0261-6

Hair J. F., 2016, A Primer on Partial Least Squares Structural Equation Modeling (PLS‐SEM)

10.1016/j.ijinfomgt.2013.01.001

10.1177/1476127008100133

10.1002/smj.955

10.1108/IMDS-09-2015-0382

10.1007/s11747-014-0403-8

10.1038/s41568-018-0016-5

10.2307/41703507

Intel(2016). ‘Accelerating business growth through IT’. Available athttps://www.intel.com/content/dam/www/public/us/en/documents/best-practices/using-big-data-in-manufacturing-at-intels-smart-factories-paper.pdf[accessed 15 June 2018].

10.1016/j.eswa.2013.06.069

10.1016/j.jbusres.2016.08.007

10.1086/376806

10.1080/00207543.2016.1154209

Kiron D., 2017, Lessons from becoming a data‐driven organization, MIT Sloan Management Review, 58, 1

10.1016/S1047-8310(03)00003-8

10.2307/256824

10.1016/j.ijinfomgt.2014.02.002

LaValle S., 2011, Big data, analytics and the path from insights to value, MIT Sloan Management Review, 52, 21

10.1016/j.bushor.2017.01.004

10.1016/j.procir.2015.08.026

10.1080/07421222.2018.1451953

10.1016/j.jbusres.2012.08.007

10.1016/j.ijpe.2014.01.011

Liu Y., 2014, Big data and predictive business analytics, Journal of Business Forecasting, 33, 40

10.2307/41409967

10.2307/23044045

Manyika J. M.Chui B.Brown J.Bughin R.Dobbs C.RoxburghandA. H.Byers(2011). ‘Big data: the next frontier for innovation competition and productivity’. Technical Report McKinsey Global Institute.

10.14419/ijet.v7i3.9789

McAfee A., 2012, Big data: the management revolution, Harvard Business Review, 90, 60

10.1016/j.jbusres.2016.09.004

Mikalef P. V. A.Framnes F.Danielsen J.KrogstieandD. H.Olsen(2017a 2018). ‘Big data analytics capability: antecedents and business value’. Paper presented at the Pacific Asia Conference on Information Systems Langkawi Malaysia.

10.1007/s10257-017-0362-y

10.1111/1467-8551.12234

10.1016/j.im.2005.12.001

10.1007/s12525-017-0261-6

Nunnally J., 1978, Psychometric Methods

10.1186/s40064-016-3128-y

10.1287/isre.1060.0094

10.1111/j.1540-5915.2010.00287.x

10.2307/25148814

10.1080/07421222.1993.11518001

10.1037/0021-9010.88.5.879

10.1007/s10796-016-9720-4

10.3758/BRM.40.3.879

10.1108/MD-09-2013-0437

10.1093/icc/dtr049

10.1089/big.2013.1508

Ransbotham S., 2017, Analytics as a source of business innovation, MIT Sloan Management Review, 58, 1

Ransbotham S., 2015, Minding the analytics gap, MIT Sloan Management Review, 56, 63

Ransbotham S., 2016, Beyond the hype: the hard work behind analytics success, MIT Sloan Management Review, 57, 3

Ringle C. M. S.WendeandJ.‐M.Becker(2015).SmartPLS 3. Boenningstedt: SmartPLS GmbH. Available athttp://www.smartpls.com[accessed 12 November 2017].

10.1111/j.1540-5885.2012.00956.x

10.1016/S0048-7333(01)00176-7

Ross J. W., 2013, You may not need big data after all, Harvard Business Review, 91, 90

Sagiroglu S.andD.Sinanc(2013). ‘Big data: a review’. Paper presented at the Collaboration Technologies and Systems (CTS) International Conference.

10.5465/annals.2016.0014

10.1111/jbl.12082

10.1057/ejis.2012.45

10.1016/j.jbusres.2016.08.003

10.1111/1467-8551.12246

10.1057/ejis.2014.17

10.1002/(SICI)1097-0266(199808)19:8<729::AID-SMJ967>3.0.CO;2-4

10.17705/1CAIS.01324

10.5465/amj.2005.17407911

10.1109/MC.2013.155

10.2753/MIS0742-1222300306

10.1525/cmr.2016.58.4.5

10.1002/smj.640

10.1007/978-3-319-07533-4_9

10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z

10.1016/j.csda.2004.03.005

Tushman M. L., 1995, Research in Organizational Behavior, 171

10.1177/1094670516679272

10.1016/j.ejor.2017.02.023

10.2307/25148626

10.1111/jbl.12010

10.1016/j.ijpe.2014.12.031

10.1016/j.jbusres.2016.08.009

10.1016/j.ijpe.2016.03.014

10.1016/j.techfore.2015.12.019

10.1111/1467-8551.12153

10.2307/20650284

10.1007/s11747-014-0380-y

10.1002/smj.318

10.1016/j.jbusres.2012.12.021

10.1016/j.jbusres.2015.10.017

10.1287/isre.1090.0269

10.1111/j.1467-6486.2006.00616.x