Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
So Sánh Tính Chất Ma Sát Của Lớp Phủ Mềm Bi2S3 và MoS2 Dưới Các Mức Độ Độ Ẩm Khác Nhau, Tải Trọng Bình Thường, và Tốc Độ Trượt
Tóm tắt
Bi2S3 là một loại chất bôi trơn rắn triển vọng cho các ứng dụng đòi hỏi, chẳng hạn như khai thác dầu, khai thác mỏ nặng, và các linh kiện hàng không vũ trụ. Tuy nhiên, hành vi ma sát của nó chưa được nghiên cứu một cách sâu sắc. Các lớp phủ mềm Bi2S3 được đánh giá thông qua các thử nghiệm trượt lặp lại dưới các mức độ độ ẩm tương đối khác nhau, tải trọng bình thường và tốc độ trượt, và kết quả đã được so sánh với các lớp phủ MoS2. Ngoài ra, các tính toán ab initio sử dụng lý thuyết hàm mật độ đã được áp dụng để nghiên cứu tương tác giữa các sulfide và các nền thép, cũng như tác động của việc intercalation nước trên mức độ nguyên tử. Kết quả cho thấy các lớp phủ Bi2S3 có khả năng thích ứng với môi trường tốt và bảo vệ nền tảng trên một phạm vi rộng các điều kiện thử nghiệm, nhờ vào cấu trúc tinh thể đặc trưng của chúng.
Từ khóa
#Bi2S3 #MoS2 #lớp phủ mềm #ma sát #độ ẩm #tải trọng bình thường #tốc độ trượtTài liệu tham khảo
Castiñeiras, T., Núñez, A., Gallo, E., Carcagno, G.: Dry dope-free OCTG connections: a novel environmentally friendly technology validated through diverse and severe field conditions. SPE/IADC Drill. Conf. Proc. 2, 879–890 (2009). https://doi.org/10.2118/119642-ms
Leech, A., Roberts, A.: Development of premium threaded connections for casing and tubing. SPE Drill. Complet. 22, 106–111 (2007)
Miyoshi, K.: Solid lubricants and coatings for extreme environments: state-of-the-art survey. Nasa Tm-2007–214668. 1–23 (2007). https://ntrs.nasa.gov/api/citations/20070010580/downloads/20070010580.pdf
Gohardani, O., Elola, M.C., Elizetxea, C.: Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: a review of current and expected applications in aerospace sciences. Prog. Aerosp. Sci. 70, 42–68 (2014). https://doi.org/10.1016/j.paerosci.2014.05.002
Donnet, C., Erdemir, A.: Solid lubricant coatings: recent developments and future trends. Tribol. Lett. 17, 389–397 (2004). https://doi.org/10.1023/B:TRIL.0000044487.32514.1d
Erdemir, A., Martin, J.M.: Superior wear resistance of diamond and DLC coatings. Curr. Opin. Solid State Mater. Sci. 22, 243–254 (2018). https://doi.org/10.1016/j.cossms.2018.11.003
Zhai, W., Srikanth, N., Kong, L.B., Zhou, K.: Carbon nanomaterials in tribology. Carbon N. Y. 119, 150–171 (2017). https://doi.org/10.1016/j.carbon.2017.04.027
Muratore, C., Voevodin, A.A.: Chameleon coatings: adaptive surfaces to reduce friction and wear in extreme environments. Annu. Rev. Mater. Res. 39, 297–324 (2009). https://doi.org/10.1146/annurev-matsci-082908-145259
Kupčík, V., Veselá-Nováková, L.: Zur Kristallstruktur des Bismuthinits, Bi2S3. TMPM Tschermaks Mineral. und Petrogr. Mitteilungen. 14, 55–59 (1970). https://doi.org/10.1007/BF01081780
Łukaszewicz, K., Stępień-Damm, J., Pietraszko, A., Kajokas, A., Grigas, J.: Crystal structure, thermal expansion, dielectric permittivity and phase transitions of Bi2S3. Pol. J. Chem. 73, 541–546 (1999)
Lundegaard, L.F., Makovicky, E., Boffa-Ballaran, T., Balic-Zunic, T.: Crystal structure and cation lone electron pair activity of Bi2S3 between 0 and 10 GPa. Phys. Chem. Miner. 32, 578–584 (2005). https://doi.org/10.1007/s00269-005-0033-2
Rohr, O.: Bismuth—the new ecologically green metal for modern lubricating engineering. Ind. Lubr. Tribol. 54, 153–164 (2002). https://doi.org/10.1108/00368790210431709
Gonzalez-Rodriguez, P., van den Nieuwenhuijzen, K.J.H., Lette, W., Schipper, D.J., ten Elshof, J.E.: Tribochemistry of bismuth and bismuth salts for solid lubrication. ACS Appl. Mater. Interfaces. 8, 7601–7606 (2016). https://doi.org/10.1021/acsami.6b02541
Krenev, V.A., Drobot, N.F., Fomichev, S.V.: Bismuth: reserves, applications, and the world market. Theor. Found. Chem. Eng. 49, 532–535 (2015). https://doi.org/10.1134/S0040579515040120
Begum, A., Hussain, A., Rahman, A.: Optical and electrical properties of doped and undoped Bi2S3-PVA films prepared by chemical drop method. Mater. Sci. Appl. 02, 163–168 (2011). https://doi.org/10.4236/msa.2011.23020
Mesquita, P.R.R., Almeida, J.S., Teixeira, L.S.G., Da Silva, A.F., Silva, L.A.: A fast sonochemical method to prepare 1D and 3D nanostructures of bismuth sulfide. J. Braz. Chem. Soc. 24, 280–284 (2013). https://doi.org/10.5935/0103-5053.20130036
Zhu, H., Hu, J., Zhang, Y., Fei, Y.: Extreme pressure properties and mechanism of bismuth naphthenate with sulfur containing additives. In: Proceedings of CIST2008 & ITS-IFToMM2008. pp. 878–879, Beijing, China (2008). https://doi.org/10.1007/978-3-642-03653-8_297
Hart, R.T., Kerr, A., Eckert, N.: Bismuth sulfide (Bi2S3) as the active species in extreme pressure lubricants containing bismuth carboxylates and sulfur compounds. Tribol. Trans. 53, 22–28 (2010). https://doi.org/10.1080/10402000903154816
Hu, J.Q., Zhu, J., Gao, K.Y., Fei, Y.W.: Study on tribological properties of organic bismuth compounds as lubricationg additive. Adv. Mater. Res. 233–235, 1632–1635 (2011)
Xu, X.I.N., Hu, J., Yang, S., Xie, F., Guo, L.I.: Extreme pressure synergistic mechanism of bismuth napthenate and sulfurized isobutene additives. Surf. Rev. Lett. 24, 1–12 (2017). https://doi.org/10.1142/S0218625X17500718
Müller, C., Redondo, F.L., Dennehy, M., Ciolino, A.E., Tuckart, W.R.: Bismuth (III) sulfide as additive: towards better lubricity without toxicity. Ind. Lubr. Tribol. 70, 347–352 (2018). https://doi.org/10.1108/ILT-03-2017-0051
Müller, C., Avila, A.J., Denehy, M., Yañez, M.J., Ciolino, A.E., Tuckart, W.: Morphological and tribological analysis of synthetic and commercial sulfures. Microsc. Microanal. 26, 115–116 (2020). https://doi.org/10.1017/s1431927620000793
Vazirisereshk, M.R., Martini, A., Strubbe, D.A., Baykara, M.Z.: Solid lubrication with MoS2: a review. Lubricants 7, 57 (2019). https://doi.org/10.3390/lubricants7070057
Singer, I.L., Bolster, R.N., Wegand, J., Fayeulle, S., Stupp, B.C.: Hertzian stress contribution to low friction behavior of thin MoS2 coatings. Appl. Phys. Lett. 57, 995–997 (1990). https://doi.org/10.1063/1.104276
Donnet, C., Martin, J.M., Le Mogne, T., Belin, M.: The origin of super-low friction coefficient of MoS2 coatings in various environments. Tribol. Ser. 27, 277–284 (1994). https://doi.org/10.1016/S0167-8922(08)70317-1
Kohli, A.K., Prakash, B.: Contact pressure dependency in frictional behavior of burnished molybdenum disulphide coatings. Tribol. Trans. 44, 147–151 (2001). https://doi.org/10.1080/10402000108982439
Liang, T., Sawyer, W.G., Perry, S.S., Sinnott, S.B., Phillpot, S.R.: First-principles determination of static potential energy surfaces for atomic friction in MoS2 and MoO3. Phys. Rev. Condens. B Matter Mater. Phys. 77, 1–6 (2008)
Onodera, T., Morlta, Y., Suzuki, A., Koyama, M., Tsuboi, H., Hatakeyama, N., Endou, A., Takaba, H., Kubo, M., Dassenoy, F., Minfray, C., Joly-Pottuz, L., Martin, J.M., Miyamoto, A.: A computational chemistry study on friction of h-MoS2. Part I. Mechanism of single sheet lubrication. J. Phys. Chem. B. 113, 16526–16536 (2009). https://doi.org/10.1021/jp9069866
Onodera, T., Morita, Y., Nagumo, R., Miura, R., Suzuki, A., Tsuboi, H., Hatakeyama, N., Endou, A., Takaba, H., Dassenoy, F., Minfray, C., Joly-Pottuz, L., Kubo, M., Martin, J.M., Miyamoto, A.: A computational chemistry study on friction of h-MoS2. Part II. Friction anisotropy. J. Phys. Chem. B. 114, 15832–15838 (2010). https://doi.org/10.1021/jp1064775
Levita, G., Cavaleiro, A., Molinari, E., Polcar, T., Righi, M.C.: Sliding properties of MoS2 layers: load and interlayer orientation effects. J. Phys. Chem. C. 118, 13809–13816 (2014). https://doi.org/10.1021/jp4098099
Levita, G., Restuccia, P., Righi, M.C.: Graphene and MoS2 interacting with water: a comparison by ab initio calculations. Carbon 107, 878–884 (2016). https://doi.org/10.1016/j.carbon.2016.06.072
Levita, G., Righi, M.C.: Effects of water intercalation and tribochemistry on MoS2 lubricity: an ab initio molecular dynamics investigation. ChemPhysChem 18, 1475–1480 (2017). https://doi.org/10.1002/cphc.201601143
Arif, T., Yadav, S., Colas, G., Singh, C.V., Filleter, T.: Understanding the independent and interdependent role of water and oxidation on the tribology of ultrathin molybdenum disulfide (MoS2). Adv. Mater. Interfaces. 6, 1–9 (2019). https://doi.org/10.1002/admi.201901246
Chow, P.K., Singh, E., Viana, B.C., Gao, J., Luo, J., Li, J., Lin, Z., Elías, A.L., Shi, Y., Wang, Z., Terrones, M., Koratkar, N.: Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. ACS Nano 9, 3023–3031 (2015). https://doi.org/10.1021/nn5072073
Singer, I.L.: A thermochemical model for analyzing low wear-rate materials. Surf. Coatings Technol. 49, 474–481 (1991). https://doi.org/10.1016/0257-8972(91)90103-4
Zhu, X., Lauwerens, W., Cosemans, P., Van Stappen, M., Celis, J.P., Stals, L.M., He, J.: Different tribological behavior of MoS2 coatings under freeting and pin-on-disk conditions. Surf. Coatings Technol. 163–164, 422–428 (2003). https://doi.org/10.1016/S0257-8972(02)00638-2
International Organization for Standarization, ISO 25178-2:2012 Geometrical product specifications (GPS) — Surface texture: areal — Part 2: Terms, definitions and surface texture parameters (2017)
Greenspan, L.: Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bur. Stand. 1934(81A), 89–96 (1977)
Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, 864 (1964)
Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)
Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B. 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
Grimme, S., Ehrlich, S., Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
Panigrahi, P.K., Pathak, A.: The growth of bismuth sulfide nanorods from spherical-shaped amorphous precursor particles under hydrothermal condition. J. Nanopart. 2013, 1–11 (2013). https://doi.org/10.1155/2013/367812
Scharf, T.W., Kotula, P.G., Prasad, S.V.: Friction and wear mechanisms in MoS2Sb2O2Au nanocomposite coatings. Acta Mater. 58, 4100–4109 (2010). https://doi.org/10.1016/j.actamat.2010.03.040
Fusaro, R.L.: Lubrication and failure mechanisms of molybdenum disulfide films. 2: effect of substrate roughness. NASA TP-1379 (1978). https://ntrs.nasa.gov/api/citations/19790004988/downloads/19790004988.pdf
Khare, H.S., Burris, D.L.: The effects of environmental water and oxygen on the temperature-dependent friction of sputtered molybdenum disulfide. Tribol. Lett. 52, 485–493 (2013). https://doi.org/10.1007/s11249-013-0233-8
Burris, H.S.K.D.L.: Surface and subsurface contributions of oxidation and moisture to room temperature friction of molybdenum disulfide. Tribol. Lett. 53, 329–336 (2014). https://doi.org/10.1007/s11249-013-0273-0
Valeri, S., Marchetto, D., Rota, A., Gualtieri, E., Ballestrazzi, A., Serpini, E.: The role of humidity and oxygen on MoS2 thin films deposited by RF PVD magnetron sputtering. Surf. Coat. Technol. 319, 345–352 (2017). https://doi.org/10.1016/j.surfcoat.2017.04.006
Fusaro, R.L.: Effect of substrate surface finish on the lubrication and failure mechanisms of molybdenum disulfide films. ASLE Trans. 25, 141–156 (1982). https://doi.org/10.1080/05698198208983076
Fayeulle, S., Ehni, P.D., Singer, I.L.: Analysis of transfer films formed on steel and Co-WC during sliding against MoS2-coated steel in argon. Surf. Coat. Technol. 41, 93–101 (1990). https://doi.org/10.1016/0257-8972(90)90133-W
Singer, I.L.: Solid lubrication processes. In: Singer, I.L., Pollock, H.M. (eds.) Fundamentals of friction: macroscopic and microscopic processes. Springer, Dordrecht (1992)
Wahl, K.J., Singer, I.L.: Quantification of a lubricant transfer process that enhances the sliding life of a MoS2 coating. Tribol. Lett. 1, 59–66 (1995). https://doi.org/10.1007/BF00157976
Singer, I.L., Dvorak, S.D., Wahl, K.J., Scharf, T.W.: Role of third bodies in friction and wear of protective coatings. J. Vac. Sci. Technol. Vacuum Surf. Film. 21, 232–240 (2003). https://doi.org/10.1116/1.1599869
Li, Y., Xie, M., Sun, Q., Xu, X., Fan, X., Zhang, G., Li, H., Zhu, M.: The effect of atmosphere on the tribological behavior of magnetron sputtered MoS2 coatings. Surf. Coat. Technol. 378, 125081 (2019). https://doi.org/10.1016/j.surfcoat.2019.125081
Ding, X.Z., Zeng, X.T., He, X.Y., Chen, Z.: Tribological properties of Cr- and Ti-doped MoS2 composite coatings under different humidity atmosphere. Surf. Coat. Technol. 205, 224–231 (2010). https://doi.org/10.1016/j.surfcoat.2010.06.041
Zhao, X., Zhang, G., Wang, L., Xue, Q.: The tribological mechanism of MoS2 film under different humidity. Tribol. Lett. 65, 1–8 (2017). https://doi.org/10.1007/s11249-017-0847-3
Lince, J.R., Loewenthal, S.H., Clark, C.S.: Tribological and chemical effects of long term humid air exposure on sputter-deposited nanocomposite MoS2 coatings. Wear. 432–433, 202935 (2019). https://doi.org/10.1016/j.wear.2019.202935
Scharf, T.W., Prasad, S.V.: Solid lubricants: a review. J. Mater. Sci. 48, 511–531 (2013). https://doi.org/10.1007/s10853-012-7038-2
Colas, G., Saulot, A., Regis, E., Berthier, Y.: Investigation of crystalline and amorphous MoS2 based coatings: towards developing new coatings for space applications. Wear 330–331, 448–460 (2015). https://doi.org/10.1016/j.wear.2015.01.011
Nishiyama, Z.: Martensitic transformation. Academic Press Inc., New York (2012)
Böker, T., Severin, R., Müller, A., Janowitz, C., Manzke, R., Voß, D., Krüger, P., Mazur, A., Pollmann, J.: Band structure of MoS2, MoSe2, and α-MoTe2: angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B. (2001). https://doi.org/10.1103/PhysRevB.64.235305
Li, W., Carrete, J., Mingo, N.: Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4850995
Cutini, M., Civalleri, B., Ugliengo, P.: Cost-effective quantum mechanical approach for predicting thermodynamic and mechanical stability of pure-silica zeolites. ACS Omega 4, 1838–1846 (2019). https://doi.org/10.1021/acsomega.8b03135
Cutini, M., Maschio, L., Ugliengo, P.: Exfoliation energy of layered materials by DFT-D: beware of dispersion! J. Chem. Theory Comput. 16, 5244–5252 (2020). https://doi.org/10.1021/acs.jctc.0c00149
Cutini, M., Corno, M., Costa, D., Ugliengo, P.: How does collagen adsorb on hydroxyapatite? Insights from ab initio simulations on a polyproline type II model. J. Phys. Chem. C. 123, 7540–7550 (2019). https://doi.org/10.1021/acs.jpcc.7b10013