Beyond conjoint analysis: Advances in preference measurement

Springer Science and Business Media LLC - Tập 19 Số 3-4 - Trang 337-354 - 2008
Oded Netzer1, Olivier Toubia1, Eric T. Bradlow2, Ely Dahan3, Theodoros Evgeniou4, Fred M. Feinberg5, Elea McDonnell Feit5, Sam K. Hui6, Joseph Johnson7, John Liechty8, James B. Orlin9, Vithala R. Rao10
1 Columbia Business School, Columbia University, New York, USA.
2University of Pennsylvania, Philadelphia, USA
3UCLA Anderson School, University of California, Los Angeles, Los Angeles, USA
4INSEAD, Boulevard de Constance, Fontainebleau, France
5Stephen M. Ross School of Business – University of Michigan, Ann Arbor, USA
6Stern School of Business, New York University, New York, USA
7School of Business Administration, University of Miami, Coral Gables, USA
8Smeal College of Business, The Pennsylvania State University, State College, USA
9Sloan School of Management, Massachusetts Institute of Technology, Cambridge, USA
10Johnson Graduate School of Management, Cornell University Ithaca USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adamowicz, W., Bunch, D., Cameron, T.-A., Dellaert, B. G. C., Hanneman, M., Keane, M., et al. (2008). Behavioral frontiers in choice modeling. Marketing Letters, DOI 10.1007/s11002-008-9038-1 .

Addelman, S. (1962). Symmetrical and asymmetrical fractional factorial plans. Technometrics, 4, 47–58 (February).

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 15(6), 734–749.

Amaldoss, W., Ho, T.-H., Krishna, A., Chen, K.-Y., Desai, P., Iyer, G., et al. (2008). Experiments on strategic choices and markets. Marketing Letters, DOI 10.1007/s11002-008-9040-7 .

Ansari, A., Essegaier, S., & Kohli, R. (2000). Internet recommendation systems. Journal of Marketing Research, 37, 363–375 (August).

Arora, N., & Allenby, G. (1999). Measuring the influence of individual preference structures in group decision making. Journal of Marketing Research, 36(4), 476–487.

Arora, N., Ghose, A., Hess, J. D., Iyengar, R., Jing, B., Joshi, Y., et al. (2008). Putting one-to-one marketing to work: Personalization, customization and choice. Marketing Letters, in press.

Ben-Akiva, M., Bradley, M., Morikawa, T., Benjamin, J., Novak, T. P., Thomas, P., et al. (1994). Combining revealed and stated preference data. Marketing Letters, 5(4), 335–350.

Ben-Akiva, M., McFadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M., et al. (2002). Hybrid choice models, progress and challenges. Marketing Letters, 13(3), 163–175.

Blattberg, R. C., & George, E. I. (1992). Estimation under profit-driven loss functions. Journal of Business and Economic Statistics, 10, 437–444.

Bleichrodt, H., & Pinto, J. L. (2000). A parameter-free elicitation of the probability weighting function in medical decision analysis. Management Science, 46(11), 1485–1496.

Bradlow, E. T. (2005). Current issues and a wish-list for conjoint analysis. Applied Stochastic Models in Business and Industry, 4–5, 319–323.

Bradlow, E. T., Hu, Y., & Ho, T.-H. (2004). A learning-based model for imputing missing levels in partial conjoint profiles. Journal of Marketing Research, 41(4), 369–381.

Cattin, P., & Wittink, D. R. (1982). Commercial use of conjoint analysis: a survey. Journal of Marketing, 46(3), 44–53.

Chaloner, K., & Verdinelli, I. (1995). Bayesian experimental design: a review. Statistical Science, 10(3), 273–304.

Cui, D., & Curry, D. (2005). Prediction in marketing using the support vector machine. Marketing Science, 24(4), 595–615.

Dahan, E. (2007). Conjoint adaptive ranking database system. Working paper, University of California at Los Angeles.

Dahan, E., & Hauser, J. R. (2002). The virtual customer. Journal of Product Innovation Management, 19, 332–353.

Dahan, E., Lo, A., Poggio, T., Chan, N., & Kim, A. (2007a). Securities trading of concepts (STOC). Working paper, University of California at Los Angeles.

Dahan, E., Soukhoroukova, A., & Spann, M. (2007b). Preference markets: Organizing securities markets for opinion surveys with infinite scalability. Working paper, University of California at Los Angeles.

Dahan, E., & Srinivasan, V. (2000). The predictive power of internet-based product concept testing using visual depiction and animation. Journal of Product Innovation Management, 17, 99–109 March.

De Bruyn, A., Liechty, J. C., Huizingh, E. K. R. E., & Lilien, G. L. (2008). Offering online recommendations with minimum customer input through conjoint-based decision aids. Marketing Science, in press.

DeSarbo, W., Fong, D. K. H., Liechty, J. C., & Coupland, J. C. (2005). Evolutionary preferences/utility functions: a dynamic perspective. Psychometrika, 70(1), 179.

Ding, M. (2007). An incentive-aligned mechanism for conjoint analysis. Journal of Marketing Research, 44, 214–223 (May).

Ding, M., & Eliashberg, J. (2007). A dynamic competitive forecasting model incorporating dyadic decision-making. Management Science, 54, 820–834.

Ding, M., Grewal, R., & Liechty, J. (2005). Incentive-aligned conjoint analysis. Journal of Marketing Research, 42, 67–82 (February).

Dobson, G., & Kalish, S. (1993). Heuristics for pricing and positioning a product-line using conjoint and cost data. Management Science, 7(2), 107–125.

Erdem, T., Keane, M., Öncü, S., & Strebel, J. (2005). Learning about computers: an analysis of information search and technology choice. Quantitative Marketing and Economics, 3(3), 207–247.

Evgeniou, T., Boussios, C., & Zacharia, G. (2005). Generalized robust conjoint estimation. Marketing Science, 24(3), 415–429.

Evgeniou, T., Pontil, M., & Toubia, O. (2007). A convex optimization approach to modeling consumer heterogeneity in conjoint estimation. Marketing Science, 26(6), 805–818.

Fehr, E., & Goette, L. (2007). Do workers work more if the wages are higher: evidence from a randomized field experiment. The American Economic Review, 97(1), 298–317.

Feit, E. M., Beltramo, M. A., & Feinberg, F. M. (2007). Combining survey and market data to enhance consumer preference models. Working paper, University of Michigan.

Gensler, S., Theysohn, S., Hinz, O., & Skiera, B. (2007). Individually adjusted choice-based conjoint analysis. Working paper, Frankfurt University, Germany.

Gilbride, T. J., & Allenby, G. M. (2004). A choice model with conjunctive, disjunctive, and compensatory screening rules. Marketing Science, 23(3), 391–406.

Gilbride, T. J., Lenk, P. J., & Brazell, J. D. (2006). Market share constraints and the loss function in choice based conjoint analysis. Working paper, University of Notre Dame.

Gilula, Z., McCulloch, R. E., & Rossi, P. E. (2006). A direct approach to data fusion. Journal of Marketing Research, 43(1), 73–83.

Ghose, S., & Rao, V. R. (2007). A choice model of bundles features and meta-attributes: An application to product design. Working paper, Cornell University.

Godes, D., & Mayzlin, D. (2004). Using online conversations to study word-of-mouth communication. Marketing Science, 23(4), 545–560.

Goldenberg, J., Libai, B., & Muller, E. (2002). Riding the saddle: How cross-market communications can create a major slump in sales. Journal of Marketing, 66(2), 1–16.

Gonzalez, R., & Wu, G. (1999). On the shape of the probability weighting function. Cognitive Psychology, 38, 129–166.

Green, P. E., Goldberg, S. M., & Montemayor, M. (1981). A hybrid utility estimation model for conjoint analysis. Journal of Marketing, 45, 33–41 (Winter).

Green, P. E., & Krieger, A. M. (1985). Models and heuristics for product line selection. Marketing Science, 4(1), 1–19.

Green, P. E., Krieger, A. M., & Bansal, P. (1988). Completely unacceptable levels in conjoint analysis: a cautionary note. Journal of Marketing Research, 25, 293–300 (August).

Green, P. E., & Rao, V. R. (1971). Conjoint measurement for quantifying judgmental data. Journal of Marketing Research, 8, 355–363.

Green, P. E., & Srinivasan, V. (1990). Conjoint analysis in marketing: New developments with implications for research and practice. Journal of Marketing Research, 54, 3–19 (October).

Gustafsson, A., Herrmann, A., & Huber, F. (2007). Conjoint measurement: Methods and applications (4th ed.). Berlin: Springer Verlag.

Haaijer, M. E., Kamakura, W. A., & Wedel, M. (2000). Response latencies in the analysis of conjoint choice experiments. Journal of Marketing Research, 37(3), 376–382.

Haaijer, R., Wedel, M., Vriens, M., & Wansbeek, T. (1998). Utility covariances and context effects in conjoint MNP models. Marketing Science, 17(3), 236–252.

Häubl, G., & Murray, K. B. (2003). Preference construction and preference in digital marketplaces: The role of electronic recommendation agents. Journal of Consumer Psychology, 13, 75–91.

Häubl, G., & Trifts, V. (2000). Interactive decision aids. Marketing Science, 19(1), 4–21.

Horsky, D., Misra, S., & Nelson, P. (2006). Observed and unobserved preference heterogeneity in brand-choice models. Marketing Science, 25(4), 322–335.

Hui, S. K., Bradlow, E. T., & Fader, P. S. (2008a). An integrated model of grocery store shopping path and purchase behavior. Working paper, The Wharton School, University of Pennsylvania.

Hui, S. K., Fader, P. S., & Bradlow, E. T. (2008b). Path data in marketing: An integrative framework and prospectus for model-building. Marketing Science, in press.

Iyengar, R., Jedidi, K., & Kohli, R. (2008). A conjoint approach to multi-part pricing. Journal of Marketing Research, 45(2), 195–210.

Jarnebrant, P., Toubia, O., & Johnson, E. J. (2008). The silver lining effect: Formal analysis and experiments. Working paper, Columbia Business School.

Jedidi, K., & Kohli, R. (2005). Probabilistic subset-conjunctive models for heterogeneous consumers. Journal of Marketing Research, 42(4), 483–494.

Johnson, R. M. (1987). Adaptive conjoint analysis. In: Sawtooth Software Conference Proceedings, Ketchum, ID: Sawtooth Software, July, 253–265.

Johnson, J., Tellis, G. J., & MacInnis, D. J. (2005). Losers, winners and biased trades. Journal of Consumer Research, 32(2), 324–329.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–292.

Kim, J. G. (2004). Dynamic heterogeneous choice heuristics: A Bayesian hidden Markov mixture model approach. Working Paper, MIT Sloan School of Management.

Kim, J. G., Menzefricke, U., & Feinberg, F. M. (2005). Modeling parametric evolution in a random utility framework. Journal of Business and Economic Statistics, 23(5), 282–294.

Kim, J. G., Menzefricke, U., & Feinberg, F. M. (2007). Capturing flexible heterogeneous utility curves: Bayesian spline approach. Management Science, 53(2), 340–354.

Kivetz, R., Netzer, O., & Srinivasan, V. (2004a). Alternative models for capturing the compromise effect. Journal of Marketing Research, 41(3), 237–257.

Kivetz, R., Netzer, O., & Srinivasan, V. (2004b). Extending compromise effect models to complex buying situations and other context effects. Journal of Marketing Research, 41(3), 262–268.

Kohli, R., & Jedidi, K. (2007). Representation and inference of lexicographic preference models and their variants. Marketing Science, 26(3), 380–399.

Kohli, R., & Sukumar, R. (1990). Heuristics for product-line design using conjoint analysis. Management Science, 36(12), 1464–1478.

Kuhfeld, W. F., Tobias, R. D., & Garratt, M. (1994). Efficient experimental design with marketing applications. Journal of Marketing Research, 31(4), 545–557.

Lachaab, M., Ansari, A., Jedidi, K., & Trabelsi, A. (2006). Modeling preference evolution in discrete choice models: a Bayesian state-space approach. Quantitative Marketing and Economics, 4, 57–81.

Lee, T. Y., & Bradlow, E. T. (2008). Automatic construction of conjoint attributes and levels from online customer reviews. Working paper, The Wharton School, University of Pennsylvania.

Lenk, P. J., DeSarbo, W. S., Green, P. E., & Young, M. R. (1996). Hierarchical Bayes conjoint analysis: recovery of partworth heterogeneity from reduced experimental designs. Marketing Science, 15(2), 173–91.

Liechty, J. C., Fong, D. K. H., & DeSarbo, W. S. (2005). Dynamic models incorporating individual heterogeneity: utility evolution in conjoint analysis. Marketing Science, 24(2), 285–293.

Liechty, J., Pieters, R., & Wedel, M. (2003). Global and local covert visual attention: evidence from a Bayesian hidden Markov model. Psychometrika, 68, 519–542.

Liechty, J., Ramaswamy, V., & Cohen, S. H. (2001). Choice menus for mass customization: an experimental approach for analyzing customer demand with an application to a web-based information service. Journal of Marketing Research, 38(2), 183–196.

Louviere, J. J., Meyer, R. J., Bunch, D. S., Carson, R., Dellaert, B., Hanemann, M., et al. (1999). Combining sources of preference data for modeling complex decision processes. Marketing Letters, 10(3), 187–204.

Luo, L., Kannan, P. K., Besharati, B., & Azarm, S. (2005). Design of robust new products under variability: marketing meets design. Journal of Product Innovation Management, 22, 177–192.

Luo, L., Kannan, P. K., & Ratchford, B. (2008). Incorporating subjective characteristics in product design and evaluations. Journal of Marketing Research, 45(2), 182–194.

Marshall, P., & Bradlow, E. T. (2002). A unified approach to conjoint analysis models. Journal of the American Statistical Association, 97(459), 674–682.

McBride, R., & Zufryden, F. S. (1988). An integer programming approach to the optimal product line selection problem. Marketing Science, 7(2), 126–140.

Michalek, J. J., Feinberg, F. M., Ebbes, P., Adigüzel, F., & Papalambros, P. Y. (2007). Optimal feasible product line design for heterogeneous markets. Working paper, Department of Mechanical Engineering, Carnegie-Mellon University.

Michalek, J. J., Feinberg, F. M., & Papalambros, P. Y. (2005). Linking marketing and engineering product design decisions via analytical target cascading. Journal of Product Innovation Management, 22, 42–62.

Netzer, O., Schrift, R., & Toubia, O. (2008). Modeling and exploiting response time in conjoint analysis. Working paper, Columbia Business School.

Netzer, O., & Srinivasan, V. (2008). Adaptive self-explication of multi-attribute preferences. Working paper, Columbia Business School.

Otter, T., Allenby, G. M., & van Zandt, T. (2008). An integrated model of choice and response time with applications to conjoint analysis. Journal of Marketing Research, in press.

Park, Y. H., Ding, M., & Rao, V. R. (2008). Eliciting preference for complex products: A web-based upgrading method. Journal of Marketing Research, in press.

Parker, B. R., & Srinivasan V. (1976). A consumer preference approach to the planning of rural primary health-care facilities. Operations Research, 24(5), 991–1025.

Prelec, D. (1998). The probability weighting function. Econometrica, 66(3), 497–527.

Prelec, D. (2001). A two-person scoring rule for subjective reports. Working Paper, Center for Innovation in Product Development, Cambridge, MA, Massachusetts Institute of Technology.

Rao, V. R., & Steckel, J. H. (1991). A polarization model for describing group preferences. Journal of Consumer Research, 18(1), 108–118.

Rossi, P. E., & Allenby, G. M. (2003). Bayesian statistics and marketing. Marketing Science, 22(3), 304–328.

Saigal, C., Dahan, E., & Cumberland, W. (2007). Measuring prostate cancer treatnment preferences with standard gambles, time tradeoffs and conjoint analysis. NIH Research Proposal.

Sandor, Z., & Wedel, M. (2001). Designing conjoint choice experiments using managers prior beliefs. Journal of Marketing Research, 38, 430–444.

Sandor, Z., & Wedel, M. (2005). Heterogeneous conjoint choice designs. Journal of Marketing Research, 42, 210–218.

Sonnier, G., Ainslie, A., & Otter, T. (2007). Heterogeneity distributions of willingness-to-pay in choice models. Quantitative Marketing and Economics, 5(3), 313–331.

Srebro, N., Rennie, J. D. M., & Jaakkola, T. (2005). Maximum margin matrix factorization. Advances In Neural Information Processing Systems, 17.

Srinivasan, V. (1988). A conjunctive-compensatory approach to the self-explication of multiattributed preferences. Decision Sciences, 19, 295–305 (Spring).

Srinivasan, V., Lovejoy, W. S., & Beach, D. (1997). Integrated product design for marketability and manufacturing. Journal of Marketing Research, 34(1), 154–163.

Srinivasan, V., & Shocker, A. D. (1973a). Linear programming techniques for multidimensional analysis of preferences. Psychometrika, 38(3), 337–369.

Srinivasan, V., & Shocker, A. D. (1973b). Estimating the weights for multiple attributes in a composite criterion using pairwise judgments. Psychometrika, 38(4), 473–493.

Su, M., & Rao, V. R. (2007). Evolution in willingness to pay at attribute level and its impact on new product adoption: a continuous conjoint analysis. Working paper, Cornell university.

Tanaka, T., Camerer, C. F., & Nguyen, Q. (2007). Risk and time preferences: experimental and household survey data from Vietnam. Working paper, California Institute of Technology.

Ter Hofstede, F., Kim, Y., & Wedel, M. (2002). Bayesian prediction in hybrid conjoint analysis. Journal of Marketing Research, 34(2), 253–261.

Toubia, O., & Hauser, J. R. (2007). On managerially efficient experimental designs. Marketing Science, 26(6), 851–858.

Toubia, O., Evgeniou, T., & Hauser, J. R. (2007a). Optimization-based and machine-learning methods for conjoint analysis: estimation and question design. In A. Gustafsson, A. Herrmann, & F. Huber (Eds.), Conjoint measurement: Methods and applications(4th ed.). Berlin: Springer Verlag.

Toubia, O., Hauser, J. R., & Garcia, R. (2007b). Probabilistic polyhedral methods for adaptive choice-based conjoint analysis: Theory and application. Marketing Science, 26(5), 596–610.

Toubia, O., Hauser, J. R., & Simester, D. (2004). Polyhedral methods for adaptive choice based conjoint analysis. Journal of Marketing Research, 41(1), 116–131.

Toubia, O., Simester, D., Hauser, J. R., & Dahan, E. (2003). Fast polyhedral conjoint estimation. Marketing Science, 22(3), 274–303.

Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323.

Vadali, S., Liechty, J., & Rangaswamy, A. (2007). Generalized hierarchical Bayes estimation for polyhedral conjoint analysis. Working Paper, Pennsylvania State University.

von Hippel, E., & Katz, R. (2002). Shifting innovation to users via toolkits. Management Science, 48(7), 821–833.

Wassenaar, H. J., Chen, W., Cheng, J., & Sudjianto, A. (2005). Enhancing discrete choice demand modeling for decision-based design. ASME Journal of Mechanical Design, 127(4), 514–523.

Wind, J., Green, P. E., Shifflet, D., & Scarbrough, M. (1989). Courtyard by Marriott: designing a hotel facility with consumer-based marketing models. Interfaces, 19, 25–47.

Wittink, D. R., & Cattin, P. (1989). Commercial use of conjoint analysis: an update. Journal of Marketing, 53(3), 91–96.

Wittink, D. R., Krishnamurthi, L., & Reibstein, D. J. (1989). The effect of differences in the number of attribute levels on conjoint results. Marketing Letters, 1, 113–123.

Yee, M., Dahan, E., Hauser, J. R., & Orlin, J. (2008). Greedoid-based noncompensatory inference. Marketing Science, 26(4), 532–549.

Ying, Y., Feinberg, F. M., & Wedel, M. (2006). Leveraging missing ratings to improve online recommendation systems. Journal of Marketing Research, 43(3), 355–365.