Beyond allostery: Catalytic regulation of a deoxyribozyme through an entropy-driven DNA amplifier

Journal of Systems Chemistry - Tập 1 - Trang 1-6 - 2010
Grace Eckhoff1, Vlad Codrea1, Andrew D Ellington1,2, Xi Chen2
1Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, USA
2Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, USA

Tóm tắt

The programmability and replicability of RNA and DNA have respectively enabled the design and selection of a number of allosteric ribozymes and deoxyribozymes. These catalysts have been adapted to function as signal transducers in biosensors and biochemical reaction networks both in vitro and in vivo. However, allosteric control of nucleic acid catalysts is currently limited by the fact that one molecule of effector (input) generally regulates at most one molecule of ribozyme or deoxyribozyme (output). In consequence, allosteric control is usually inefficient when the concentration of input molecules is low. In contrast, catalytic regulation of protein enzymes, as in protein phosphorylation cascades, generally allows one input molecule (e.g., one kinase molecule) to regulate multiple output molecules (e.g., kinase substrates). Achieving such catalytic signal amplification would also be of great utility for nucleic acid circuits. Here we show that allosteric regulation of nucleic acid enzymes can be coupled to signal amplification in an entropy-driven DNA circuit. In this circuit, kinetically trapped DNA logic gates are triggered by a specific sequence, and upon execution generate a peroxidase deoxyribozyme that converts a colorless substrate (ABTS) into a green product (ABTS•+). This scheme provides a new paradigm for the design of enzyme-free biosensors for point-of-care diagnostics.

Tài liệu tham khảo

Ellington AD, Szostak JW: In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346: 818–822. 10.1038/346818a0 Tuerk C, Gold L: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249: 505–510. 10.1126/science.2200121 Chen X, Li N, Ellington AD: Ribozyme catalysis of metabolism in the RNA world. Chem Biodivers 2007, 4: 633–655. 10.1002/cbdv.200790055 Breaker RR, Joyce GF: A DNA enzyme that cleaves RNA. Chem Biol 1994, 1: 223–229. 10.1016/1074-5521(94)90014-0 Liu J, Cao Z, Lu Y: Functional nucleic acid sensors. Chem Rev 2009, 109: 1948–1998. 10.1021/cr030183i Willner I, Zayats M: Electronic aptamer-based sensors. Angew Chem Int Ed Engl 2007, 46: 6408–6418. 10.1002/anie.200604524 Stojanovic MN, Stefanovic D: A deoxyribozyme-based molecular automaton. Nat Biotechnol 2003, 21: 1069–1074. 10.1038/nbt862 Mao C, LaBean TH, Relf JH, Seeman NC: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 2000, 407: 493–496. 10.1038/35035038 Isaacs FJ, Dwyer DJ, Collins JJ: RNA synthetic biology. Nat Biotechnol 2006, 24: 545–554. 10.1038/nbt1208 Levy M, Ellington AD: Exponential growth by cross-catalytic cleavage of deoxyribozymogens. Proc Natl Acad Sci USA 2003, 100: 6416–6421. 10.1073/pnas.1130145100 Lam BJ, Joyce GF: Autocatalytic aptazymes enable ligand-dependent exponential amplification of RNA. Nat Biotechnol 2009, 27: 288–292. 10.1038/nbt.1528 Teller C, Shimron S, Willner I: Aptamer-DNAzyme hairpins for amplified biosensing. Anal Chem 2009, 81: 9114–9119. 10.1021/ac901773b Grossmann TN, Strohbach A, Seitz O: Achieving turnover in DNA-templated reactions. Chembiochem 2008, 9: 2185–2192. 10.1002/cbic.200800290 Zhang DY, Turberfield AJ, Yurke B, Winfree E: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 2007, 318: 1121–1125. 10.1126/science.1148532 Zhang DY, Winfree E: Dynamic allosteric control of noncovalent DNA catalysis reactions. J Am Chem Soc 2008, 130: 13921–13926. 10.1021/ja803318t Zhang DY, Winfree E: Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc 2009, 131: 17303–17314. 10.1021/ja906987s Zhang DY, Winfree E: Robustness and modularity properties of a non-covalent DNA catalytic reaction. Nucleic Acids Res 2010, 38: 4182–4197. 10.1093/nar/gkq088 Qian L, Winfree E: A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits. Lect Notes Comput Sc 2009, 5347: 70–89. full_text Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E: Programmable and autonomous computing machine made of biomolecules. Nature 2001, 414: 430–434. 10.1038/35106533 Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E: An autonomous molecular computer for logical control of gene expression. Nature 2004, 429: 423–429. 10.1038/nature02551 Beyer S, Simmel FC: A modular DNA signal translator for the controlled release of a protein by an aptamer. Nucleic Acids Res 2006, 34: 1581–1587. 10.1093/nar/gkl075 Kim J, White KS, Winfree E: Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol Syst Biol 2006, 2: 68. 10.1038/msb4100099 Dirks RM, Pierce NA: Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci USA 2004, 101: 15275–15278. 10.1073/pnas.0407024101 Yin P, Choi HM, Calvert CR, Pierce NA: Programming biomolecular self-assembly pathways. Nature 2008, 451: 318–322. 10.1038/nature06451 Travascio P, Li Y, Sen D: DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem Biol 1998, 5: 505–517. 10.1016/S1074-5521(98)90006-0 Darius AK, Ling NJ, Mahesh U: Visual detection of DNA from salmonella and mycobacterium using split DNAzymes. Mol Biosyst 2010, 6: 792–794. 10.1039/c001923b Kolpashchikov DM: Split DNA enzyme for visual single nucleotide polymorphism typing. J Am Chem Soc 2008, 130: 2934–2935. 10.1021/ja711192e Deng M, Zhang D, Zhou Y, Zhou X: Highly effective colorimetric and visual detection of nucleic acids using an asymmetrically split peroxidase DNAzyme. J Am Chem Soc 2008, 130: 13095–13102. 10.1021/ja803507d Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL: A DNA-fuelled molecular machine made of DNA. Nature 2000, 406: 605–608. 10.1038/35020524 Seelig G, Soloveichik D, Zhang DY, Winfree E: Enzyme-free nucleic acid logic circuits. Science 2006, 314: 1585–1588. 10.1126/science.1132493 Kashida H, Takatsu T, Fujii T, Sekiguchi K, Liang X, Niwa K, Takase T, Yoshida Y, Asanuma H: In-stem molecular beacon containing a pseudo base pair of threoninol nucleotides for the removal of background emission. Angew Chem Int Ed Engl 2009, 48: 7044–7047. 10.1002/anie.200902367 Haner R, Biner SM, Langenegger SM, Meng T, Malinovskii VL: A highly sensitive, excimer-controlled molecular beacon. Angew Chem Int Ed Engl 2010, 49: 1227–1230. 10.1002/anie.200905829 Socher E, Jarikote DV, Knoll A, Roglin L, Burmeister J, Seitz O: FIT probes: peptide nucleic acid probes with a fluorescent base surrogate enable real-time DNA quantification and single nucleotide polymorphism discovery. Anal Biochem 2008, 375: 318–330. 10.1016/j.ab.2008.01.009