Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Bevacizumab cho tổn thương hoại tử do bức xạ sau điều trị bức xạ ở bệnh lý di căn não: một phân tích hệ thống và tổng hợp dữ liệu
Tóm tắt
Radiotherapy là phương pháp điều trị chính trong quản lý di căn não (BM). Tổn thương hoại tử do bức xạ (RN) là một biến chứng nghiêm trọng của xạ trị. Bevacizumab (BV), một kháng thể đơn dòng chống yếu tố tăng trưởng nội mô mạch máu, ngày càng được sử dụng để điều trị RN. Chúng tôi đã hệ thống hóa xem xét tài liệu y học cho các nghiên cứu báo cáo hiệu quả và độ an toàn của bevacizumab trong điều trị RN cho bệnh nhân BM. Các cơ sở dữ liệu PubMed, Medline, EMBASE, và thư viện Cochrane đã được tìm kiếm với các từ khóa tìm kiếm khác nhau như “bevacizumab” HOẶC “kháng thể đơn dòng chống VEGF” VÀ “tổn thương hoại tử do bức xạ” HOẶC “tổn thương hoại tử não do bức xạ” HOẶC “RN” HOẶC “RBN” VÀ “Di căn não” HOẶC “BM” cho đến ngày 1 tháng 8 năm 2020. Các nghiên cứu báo cáo hiệu quả và độ an toàn của điều trị BV cho bệnh nhân BM với RN đã được thu thập. Việc lựa chọn nghiên cứu và trích xuất dữ liệu được thực hiện bởi các nhà nghiên cứu độc lập. Phần mềm Open Meta Analyst đã được sử dụng như một mô hình hiệu ứng ngẫu nhiên cho phân tích tổng hợp để thu được tỷ lệ giảm trung bình. Tổng cộng có hai nghiên cứu ngẫu nhiên, bảy nghiên cứu hồi cứu và ba nghiên cứu trường hợp liên quan đến 89 bệnh nhân với RN được điều trị bằng BV đã được đưa vào phân tích hệ thống và tổng hợp này. Tổng cộng, 83 (93%) bệnh nhân có phản ứng xác định qua hình ảnh tia X đối với liệu pháp BV, và sáu (6.7%) đã trải qua bệnh tiến triển. Bảy nghiên cứu (n = 73) báo cáo về tỷ lệ giảm thể tích trung bình trên hình ảnh MRI T1 tăng cường gadolinium (trung bình: 47.03%, +/- 24.4) và hình ảnh MRI T2 sao chép hồi sảng (FLAIR) (trung bình: 61.9%, +/- 23.3). Kết hợp lại các tỷ lệ giảm T1 và T2 bằng mô hình hiệu ứng ngẫu nhiên cho thấy tỷ lệ giảm trung bình là 48.58 (95% CI: 38.32-58.85) cho tỷ lệ giảm T1 và 62.017 (95% CI: 52.235-71.799) cho các nghiên cứu hình ảnh T2W. Tám mươi lăm bệnh nhân có triệu chứng thần kinh. Sau điều trị BV, chín (10%) có triệu chứng ổn định, 39 (48%) đã cải thiện, và 34 (40%) bệnh nhân đã hoàn toàn hồi phục triệu chứng. Dữ liệu của bệnh nhân cá nhân có sẵn cho 54 bệnh nhân. Việc ngừng hoặc giảm liều dexamethasone đã được quan sát ở 30 (97%) trong số 31 bệnh nhân đã ghi nhận liều trước và sau điều trị BV. Các tác dụng phụ là nhẹ. Bevacizumab mang đến một chiến lược điều trị hứa hẹn cho bệnh nhân có RN và bệnh lý di căn não. Phản ứng qua hình ảnh và cải thiện lâm sàng đã được quan sát mà không có bất kỳ sự kiện phụ nghiêm trọng nào. Cần có thêm bằng chứng loại I để thiết lập khuyến cáo về bevacizumab trong nhóm bệnh nhân này.
Từ khóa
#Bevacizumab #tổn thương hoại tử do bức xạ #di căn não #điều trị bằng xạ trị #an toàn #hiệu quảTài liệu tham khảo
Langer CJ, Mehta MP. Current management of brain metastases, with a focus on systemic options. J Clin Oncol. 2005;23(25):6207–19. https://doi.org/10.1200/jco.2005.03.145 Epub 2005/09/02. PubMed PMID: 16135488.
Tabouret E, Chinot O, Metellus P, Tallet A, Viens P, Gonçalves A. Recent trends in epidemiology of brain metastases: an overview. Anticancer Res. 2012;32(11):4655–62 Epub 2012/11/17. PubMed PMID: 23155227.
Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol. 2004;22(14):2865–72. https://doi.org/10.1200/jco.2004.12.149 Epub 2004/07/16. PubMed PMID: 15254054.
Eichler AF, Chung E, Kodack DP, Loeffler JS, Fukumura D, Jain RK. The biology of brain metastases-translation to new therapies. Nat Rev Clin Oncol. 2011;8(6):344–56. https://doi.org/10.1038/nrclinonc.2011.58 Epub 2011/04/12. PubMed PMID: 21487419.
Nieder C, Spanne O, Mehta MP, Grosu AL, Geinitz H. Presentation, patterns of care, and survival in patients with brain metastases: what has changed in the last 20 years? Cancer. 2011;117(11):2505–12. https://doi.org/10.1002/cncr.25707 Epub 2011/06/01. PubMed PMID: 24048799.
Khan M, Arooj S, Li R, Tian Y, Zhang J, Lin J, et al. Tumor primary site and histology subtypes role in radiotherapeutic management of brain metastases. Front Oncol. 2020;10:781. https://doi.org/10.3389/fonc.2020.00781.
Khan M, Zhao Z, Arooj S, Liao G. Impact of tyrosine kinase inhibitors (TKIs) combined with radiation therapy for the management of brain metastases from renal cell carcinoma. Front Oncol. 2020;10:1246. https://doi.org/10.3389/fonc.2020.01246.
Khan M, Lin J, Liao G, Tian Y, Liang Y, Li R, et al. SRS in combination with Ipilimumab: a promising new dimension for treating melanoma brain metastases. Technol Cancer Res Treat. 2018;17:1533033818798792. https://doi.org/10.1177/1533033818798792 Epub 2018/09/15. PubMed PMID: 30213236; PubMed Central PMCID: PMCPMC6137552.
Sperduto PW, Deegan BJ, Li J, Jethwa KR, Brown PD, Lockney N, et al. Effect of targeted therapies on prognostic factors, patterns of care, and survival in patients with renal cell carcinoma and brain metastases. Int J Radiat Oncol Biol Phys. 2018;101(4):845–53. https://doi.org/10.1016/j.ijrobp.2018.04.006 Epub 2018/07/07. PubMed PMID: 29976497; PubMed Central PMCID: PMCPMC6925530.
Linskey ME, Andrews DW, Asher AL, Burri SH, Kondziolka D, Robinson PD, et al. The role of stereotactic radiosurgery in the management of patients with newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neuro-Oncol. 2010;96(1):45–68. https://doi.org/10.1007/s11060-009-0073-4 Epub 2009/12/05. PubMed PMID: 19960227; PubMed Central PMCID: PMCPmc2808519.
Lippitz B, Lindquist C, Paddick I, Peterson D, O’Neill K, Beaney R. Stereotactic radiosurgery in the treatment of brain metastases: the current evidence. Cancer Treat Rev. 2014;40(1):48–59. https://doi.org/10.1016/j.ctrv.2013.05.002.
Khan M, Lin J, Liao G, Li R, Wang B, Xie G, et al. Comparison of WBRT alone, SRS alone, and their combination in the treatment of one or more brain metastases: review and meta-analysis. Tumour Biol. 2017;39(7):1010428317702903. https://doi.org/10.1177/1010428317702903 Epub 2017/07/05. PubMed PMID: 28675121.
Khan M, Lin J, Liao G, Tian Y, Liang Y, Li R, et al. Whole brain radiation therapy plus stereotactic radiosurgery in the treatment of brain metastases leading to improved survival in patients with favorable prognostic factors. Front Oncol. 2019;9:205. https://doi.org/10.3389/fonc.2019.00205.
Barbour AB, Jacobs CD, Williamson H, Floyd SR, Suneja G, Torok JA, et al. Radiation therapy practice patterns for brain metastases in the United States in the stereotactic radiosurgery era. Adv Radiat Oncol. 2020;5(1):43–52. https://doi.org/10.1016/j.adro.2019.07.012.
Tallet AV, Dhermain F, Le Rhun E, Noël G, Kirova YM. Combined irradiation and targeted therapy or immune checkpoint blockade in brain metastases: toxicities and efficacy. Ann Oncol. 2017;28(12):2962–76. https://doi.org/10.1093/annonc/mdx408.
Johnson AG, Ruiz J, Hughes R, Page BR, Isom S, Lucas JT, et al. Impact of systemic targeted agents on the clinical outcomes of patients with brain metastases. Oncotarget. 2015;6(22):18945–55. https://doi.org/10.18632/oncotarget.4153 PubMed PMID: 26087184.
Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010;77(4):996–1001. https://doi.org/10.1016/j.ijrobp.2009.06.006 Epub 2009/09/29. PubMed PMID: 19783374.
Rahmathulla G, Marko NF, Weil RJ. Cerebral radiation necrosis: a review of the pathobiology, diagnosis and management considerations. J Clin Neurosci. 2013;20(4):485–502. https://doi.org/10.1016/j.jocn.2012.09.011 Epub 2013/02/19. PubMed PMID: 23416129.
Chung C, Bryant A, Brown PD, et al. Cochrane Database Syst Rev. 2018;7(7):Cd011492. https://doi.org/10.1002/14651858.CD011492.pub2 Epub 2018/07/11. PubMed PMID: 29987845; PubMed Central PMCID: PMCPMC6513335.
Miller JA, Bennett EE, Xiao R, Kotecha R, Chao ST, Vogelbaum MA, et al. Association between radiation necrosis and tumor biology after stereotactic radiosurgery for brain metastasis. Int J Radiat Oncol Biol Phys. 2016;96(5):1060–9. https://doi.org/10.1016/j.ijrobp.2016.08.039 Epub 2016/10/16. PubMed PMID: 27742540.
Loganadane G, Dhermain F, Louvel G, Kauv P, Deutsch E, Le Péchoux C, et al. Brain radiation necrosis: current management with a focus on non-small cell lung cancer patients. Front Oncol. 2018;8:336. https://doi.org/10.3389/fonc.2018.00336.
Juloori A, Miller J, Parsai S, Kotecha R, Ahluwalia M, Mohammadi A, et al. Overall survival and response to radiation and targeted therapies among patients with renal cell carcinoma brain metastases. J Neurosurg. 2019;132:1–9. https://doi.org/10.3171/2018.8.JNS182100.
Kim JM, Miller JA, Kotecha R, Xiao R, Juloori A, Ward MC, et al. The risk of radiation necrosis following stereotactic radiosurgery with concurrent systemic therapies. J Neuro-Oncol. 2017;133(2):357–68. https://doi.org/10.1007/s11060-017-2442-8 Epub 2017/04/24. PubMed PMID: 28434110.
Ali FS, Arevalo O, Zorofchian S, Patrizz A, Riascos R, Tandon N, et al. Cerebral radiation necrosis: incidence, pathogenesis, diagnostic challenges, and future opportunities. Curr Oncol Rep. 2019;21(8):66. https://doi.org/10.1007/s11912-019-0818-y.
Xing S, Fan Z, Shi L, Yang Z, Bai Y. Successful treatment of brain radiation necrosis resulting from triple-negative breast cancer with Endostar and short-term hyperbaric oxygen therapy: a case report. Onco Targets Ther. 2019;12:2729–35. https://doi.org/10.2147/OTT.S190409.
Hong CS, Deng D, Vera A, Chiang VL. Laser-interstitial thermal therapy compared to craniotomy for treatment of radiation necrosis or recurrent tumor in brain metastases failing radiosurgery. J Neuro-Oncol. 2019;142(2):309–17. https://doi.org/10.1007/s11060-019-03097-z.
Sharma A, Low J, Mrugala MM. Neuro-oncologists have spoken - the role of bevacizumab in the inpatient setting. A clinical and economic conundrum. Neurooncol Pract. 2019;6(1):30–6. https://doi.org/10.1093/nop/npy011.
Wong ET, Huberman M, Lu X-Q, Mahadevan A. Bevacizumab reverses cerebral radiation necrosis. J Clin Oncol. 2008;26(34):5649–50. https://doi.org/10.1200/jco.2008.19.1866 PubMed PMID: 18981459.
Lubelski D, Abdullah KG, Weil RJ, Marko NF. Bevacizumab for radiation necrosis following treatment of high grade glioma: a systematic review of the literature. J Neuro-Oncol. 2013;115(3):317–22. https://doi.org/10.1007/s11060-013-1233-0 Epub 2013/09/06. PubMed PMID: 24005770.
Delishaj D, Ursino S, Pasqualetti F, Cristaudo A, Cosottini M, Fabrini MG, et al. Bevacizumab for the treatment of radiation-induced cerebral necrosis: a systematic review of the literature. J Clin Med Res. 2017;9(4):273–80. https://doi.org/10.14740/jocmr2936e Epub 2017/03/09. PubMed PMID: 28270886; PubMed Central PMCID: PMCPMC5330769.
Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys. 2011;79(5):1487–95. https://doi.org/10.1016/j.ijrobp.2009.12.061.
Xu Y, Rong X, Hu W, Huang X, Li Y, Zheng D, et al. Bevacizumab monotherapy reduces radiation-induced brain necrosis in nasopharyngeal carcinoma patients: a randomized controlled trial. Int J Radiat Oncol Biol Phys. 2018;101(5):1087–95. https://doi.org/10.1016/j.ijrobp.2018.04.068.
Zhuang H, Zhuang H, Shi S, Wang Y. Ultra-low-dose Bevacizumab for cerebral radiation necrosis: a prospective phase II clinical study. Onco Targets Ther. 2019;12:8447–53. https://doi.org/10.2147/OTT.S223258 PubMed PMID: 31632089.
Kim JH, Chung YG, Kim CY, Kim HK, Lee HK. Upregulation of VEGF and FGF2 in normal rat brain after experimental intraoperative radiation therapy. J Korean Med Sci. 2004;19(6):879–86. https://doi.org/10.3346/jkms.2004.19.6.879 PubMed PMID: 15608402.
Wong ET, Brem S. Antiangiogenesis treatment for glioblastoma multiforme: challenges and opportunities. J Natl Compr Cancer Netw. 2008;6(5):515–22 Epub 2008/05/22. PubMed PMID: 18492463.
Soussain C, Ricard D, Fike JR, Mazeron JJ, Psimaras D, Delattre JY. CNS complications of radiotherapy and chemotherapy. Lancet (London, England). 2009;374(9701):1639–51. https://doi.org/10.1016/s0140-6736(09)61299-x.
Jiang X, Engelbach JA, Yuan L, Cates J, Gao F, Drzymala RE, et al. Anti-VEGF antibodies mitigate the development of radiation necrosis in mouse brain. Clin Cancer Res. 2014;20(10):2695–702. https://doi.org/10.1158/1078-0432.ccr-13-1941.
Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16(9):4604–13. https://doi.org/10.1128/mcb.16.9.4604 Epub 1996/09/01. PubMed PMID: 8756616; PubMed Central PMCID: PMCPMC231459.
Zhuang H, Shi S, Yuan Z, Chang JY. Bevacizumab treatment for radiation brain necrosis: mechanism, efficacy and issues. Mol Cancer. 2019;18(1):21. https://doi.org/10.1186/s12943-019-0950-1 PubMed PMID: 30732625.
Remon J, Le Pechoux C, Caramella C, Dhermain F, Louvel G, Soria JC, et al. Brain Radionecrosis treated with Bevacizumab in a patient with resected squamous cell carcinoma of the lung. J Thorac Oncol. 2017;12(1):e1–3. https://doi.org/10.1016/j.jtho.2016.08.124.
Jeyaretna DS, Curry WT Jr, Batchelor TT, Stemmer-Rachamimov A, Plotkin SR. Exacerbation of cerebral radiation necrosis by bevacizumab. J Clin Oncol. 2011;29(7):e159–62. https://doi.org/10.1200/jco.2010.31.4815.
Tye K, Engelhard HH, Slavin KV, Nicholas MK, Chmura SJ, Kwok Y, et al. An analysis of radiation necrosis of the central nervous system treated with bevacizumab. J Neuro-Oncol. 2014;117(2):321–7. https://doi.org/10.1007/s11060-014-1391-8.
Benoit A, Ducray F, Cartalat-Carel S, Psimaras D, Ricard D, Honnorat J. Favorable outcome with bevacizumab after poor outcome with steroids in a patient with temporal lobe and brainstem radiation necrosis. J Neurol. 2011;258(2):328–9. https://doi.org/10.1007/s00415-010-5747-5.
Arratibel-Echarren I, Albright K, Dalmau J, Rosenfeld MR. Use of Bevacizumab for neurological complications during initial treatment of malignant gliomas. Neurologia. 2011;26(2):74–80. https://doi.org/10.1016/j.nrl.2010.05.010.
Gonzalez J, Kumar AJ, Conrad CA, Levin VA. Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys. 2007;67(2):323–6. https://doi.org/10.1016/j.ijrobp.2006.10.010.
Torcuator R, Zuniga R, Mohan YS, Rock J, Doyle T, Anderson J, et al. Initial experience with bevacizumab treatment for biopsy confirmed cerebral radiation necrosis. J Neuro-Oncol. 2009;94(1):63–8. https://doi.org/10.1007/s11060-009-9801-z.
Li Y, Huang X, Jiang J, Hu W, Hu J, Cai J, et al. Clinical variables for prediction of the therapeutic effects of Bevacizumab monotherapy in nasopharyngeal carcinoma patients with radiation-induced brain necrosis. Int J Radiat Oncol Biol Phys. 2018;100(3):621–9. https://doi.org/10.1016/j.ijrobp.2017.11.023.
Alessandretti M, Buzaid AC, Brandão R, Brandão EP. Low-dose bevacizumab is effective in radiation-induced necrosis. Case Rep Oncol. 2013;6(3):598–601. https://doi.org/10.1159/000357401.
Xiang-Pan L, Yuxin C, Xiao-Fei W, Na L, Tang-Peng X, Xiao-Tao X, et al. Bevacizumab alleviates radiation-induced brain necrosis: a report of four cases. J Cancer Res Ther. 2015;11(2):485–7. https://doi.org/10.4103/0973-1482.140782.
Wang Y, Pan L, Sheng X, Mao Y, Yao Y, Wang E, et al. Reversal of cerebral radiation necrosis with bevacizumab treatment in 17 Chinese patients. Eur J Med Res. 2012;17(1):25. https://doi.org/10.1186/2047-783X-17-25.
Boothe D, Young R, Yamada Y, Prager A, Chan T, Beal K. Bevacizumab as a treatment for radiation necrosis of brain metastases post stereotactic radiosurgery. Neuro-Oncology. 2013;15(9):1257–63. https://doi.org/10.1093/neuonc/not085.
Furuse M, Nonoguchi N, Kawabata S, Yoritsune E, Takahashi M, Inomata T, et al. Bevacizumab treatment for symptomatic radiation necrosis diagnosed by amino acid PET. Jpn J Clin Oncol. 2013;43(3):337–41. https://doi.org/10.1093/jjco/hys231.
Yonezawa S, Miwa K, Shinoda J, Nomura Y, Asano Y, Nakayama N, et al. Bevacizumab treatment leads to observable morphological and metabolic changes in brain radiation necrosis. J Neuro-Oncol. 2014;119(1):101–9. https://doi.org/10.1007/s11060-014-1453-y.
Sadraei NH, Dahiya S, Chao ST, Murphy ES, Osei-Boateng K, Xie H, et al. Treatment of cerebral radiation necrosis with bevacizumab: the Cleveland clinic experience. Am J Clin Oncol. 2015;38(3):304–10. https://doi.org/10.1097/COC.0b013e31829c3139.
Zhuang H, Yuan X, Zheng Y, Li X, Chang JY, Wang J, et al. A study on the evaluation method and recent clinical efficacy of bevacizumab on the treatment of radiation cerebral necrosis. Sci Rep. 2016;6:24364. https://doi.org/10.1038/srep24364.
Tanigawa K, Mizuno K, Kamenohara Y, Unoki T, Misono S, Inoue H. Effect of bevacizumab on brain radiation necrosis in anaplastic lymphoma kinase-positive lung cancer. Respirol Case Rep. 2019;7(7):e00454. https://doi.org/10.1002/rcr2.454 Epub 2019/07/10. PubMed PMID: 31285826; PubMed Central PMCID: PMCPMC6590096.
Ma Y, Zheng C, Feng Y, Xu Q. Bevacizumab for the treatment of Gammaknife radiosurgery-induced brain radiation necrosis. J Craniofac Surg. 2017;28(6):e569–e71. https://doi.org/10.1097/scs.0000000000003874 Epub 2017/07/28. PubMed PMID: 28749838PubMed PMID: 28749838.
Glitza IC, Guha-Thakurta N, D'Souza NM, Amaria RN, McGovern SL, Rao G, et al. Bevacizumab as an effective treatment for radiation necrosis after radiotherapy for melanoma brain metastases. Melanoma Res. 2017;27(6):580–4. https://doi.org/10.1097/cmr.0000000000000389 Epub 2017/08/18. PubMed PMID: 28817446.
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12. https://doi.org/10.1016/j.jclinepi.2009.06.005.
Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA. 2000;283(15):2008–12. https://doi.org/10.1001/jama.283.15.2008.
Altman DG, Machin D, Bryant TN, Gardner MJ. Statistics with confidence second edition. In: BMJ Books ISBN 0 7279 1375 1; 2000. p. 28–31.
Higgins JPT, Li T, Deeks JJ. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Chapter 6: choosing effect measures and computing estimates of effect, Cochrane handbook for systematic reviews of interventions version 6.0 (updated July 2019): Cochrane; 2019. Available from https://training.cochrane.org/handbook/current/chapter-06#section-6-5-2 (table 6.5.2a).
Wallace BC, Schmid CH, Lau J, Trikalinos TA. Meta-analyst: software for meta-analysis of binary, continuous and diagnostic data. BMC Med Res Methodol. 2009;9:80. https://doi.org/10.1186/1471-2288-9-80.
Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36. https://doi.org/10.18637/jss.v036.i03.
Wallace B, Trikalinos T, Lau J, Trow P, Schmid C. Closing the gap between methodologists and end-users: R as a computational back-end. J Stat Softw. 2011;49. https://doi.org/10.18637/jss.v049.i05.
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88. https://doi.org/10.1016/0197-2456(86)90046-2.
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557.
Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE, et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000;217(2):377–84. https://doi.org/10.1148/radiology.217.2.r00nv36377.
Van Tassel P, Bruner JM, Maor MH, Leeds NE, Gleason MJ, Yung WK, et al. MR of toxic effects of accelerated fractionation radiation therapy and carboplatin chemotherapy for malignant gliomas. AJNR Am J Neuroradiol. 1995;16(4):715–26.
Mullins ME, Barest GD, Schaefer PW, Hochberg FH, Gonzalez RG, Lev MH. Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am J Neuroradiol. 2005;26(8):1967–72.
Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol. 2009;30(2):367–72. https://doi.org/10.3174/ajnr.A1362.
Reddy K, Westerly D, Chen C. MRI patterns of T1 enhancing radiation necrosis versus tumour recurrence in high-grade gliomas. J Med Imaging Radiat Oncol. 2013;57(3):349–55. https://doi.org/10.1111/j.1754-9485.2012.02472.x.
Rock JP, Hearshen D, Scarpace L, Croteau D, Gutierrez J, Fisher JL, et al. Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery. 2002;51(4):912–9; discussion 9-20. https://doi.org/10.1097/00006123-200210000-00010.
Takenaka S, Asano Y, Shinoda J, Nomura Y, Yonezawa S, Miwa K, et al. Comparison of (11)C-methionine, (11)C-choline, and (18)F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis. Neurol Med Chir (Tokyo). 2014;54(4):280–9. https://doi.org/10.2176/nmc.oa2013-0117.
Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8(7):1277–80. https://doi.org/10.1200/jco.1990.8.7.1277 Epub 1990/07/01. PubMed PMID: 2358840.
Miyatake S-I, Nonoguchi N, Furuse M, Yoritsune E, Miyata T, Kawabata S, et al. Pathophysiology, diagnosis, and treatment of radiation necrosis in the brain. Neurol Med Chir (Tokyo). 2015;55(1):50–9. https://doi.org/10.2176/nmc.ra.2014-0188.
Parvez K, Parvez A, Zadeh G. The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence. Int J Mol Sci. 2014;15(7):11832–46. https://doi.org/10.3390/ijms150711832.
Shah R, Vattoth S, Jacob R, Manzil FFP, O’Malley JP, Borghei P, et al. Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. RadioGraphics. 2012;32(5):1343–59. https://doi.org/10.1148/rg.325125002.
Chernov MF, Hayashi M, Izawa M, Usukura M, Yoshida S, Ono Y, et al. Multivoxel proton MRS for differentiation of radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases. Brain Tumor Pathol. 2006;23(1):19–27. https://doi.org/10.1007/s10014-006-0194-9.
Furuuchi K, Nishiyama A, Yoshioka H, Yokoyama T, Ishida T. Reenlargement of radiation necrosis after stereotactic radiotherapy for brain metastasis from lung cancer during bevacizumab treatment. Respir Investig. 2017;55(2):184–7. https://doi.org/10.1016/j.resinv.2016.11.001.
Gronier S, Bourg V, Frenay M, Cohen M, Mondot L, Thomas P, et al. Bevacizumab for the treatment of cerebral radionecrosis. Rev Neurol (Paris). 2011;167(4):331–6. https://doi.org/10.1016/j.neurol.2010.10.012.
Thompson EM, Frenkel EP, Neuwelt EA. The paradoxical effect of bevacizumab in the therapy of malignant gliomas. Neurology. 2011;76(1):87–93. https://doi.org/10.1212/WNL.0b013e318204a3af.
Fleming T, editor. Red book: pharmacy’s fundamental reference. 111th ed. Thomson: Belmont; 2007.
Shiroiwa T, Sung Y-K, Fukuda T, et al. International survey on willingness-to-pay (WTP) for one additional QALY gained: what is the threshold of cost effectiveness? Health Econ. 2010;19(4):422–37.
Sedgwick P. Retrospective cohort studies: advantages and disadvantages. BMJ. 2014;348:g1072. https://doi.org/10.1136/bmj.g1072.